scholarly journals Immunohistochemical Localization of DARPP-32 in the Brain of Two Lungfishes: Further Assessment of Its Relationship with the Dopaminergic System

2017 ◽  
Vol 90 (4) ◽  
pp. 289-310 ◽  
Author(s):  
Jesús M. López ◽  
Ruth Morona ◽  
Agustín González

The distribution of DARPP-32 (a phosphoprotein related to the dopamine D1 receptor) has been widely used as a means to clarify the brain regions with dopaminoceptive cells, primarily in representative species of tetrapods. The relationship between dopaminergic and dopaminoceptive elements is frequently analyzed using the catecholamine marker tyrosine hydroxylase (TH). In the present study, by means of combined immunohistochemistry, we have analyzed these relationships in lungfishes, the only group of sarcopterygian fishes represented by 6 extant species that are the phylogenetically closest living relatives of tetrapods. We used the Australian lungfish Neoceratodus forsteri and the African lungfish Protopterus dolloi. The DARPP-32 antibody yields a distinct and consistent pattern of neuronal staining in brain areas that, in general, coincide with areas that are densely innervated by TH-immunoreactive fibers. The striatum, thalamus, optic tectum, and torus semicircularis contain intensely DARPP-32-immunoreactive cell bodies and fibers. Cells are also located in the olfactory bulbs, amygdaloid complex, lateral septum, pallidum, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic region, rostral rhombencephalic reticular formation, superior raphe nucleus, octavolateral area, solitary tract nucleus, and spinal cord. Remarkably, DARPP-32-immunoreactive fibers originating in the striatum reach the region of the dopaminergic cells in the mesencephalic tegmentum and represent a well-established striatonigral pathway in lungfishes. Double immunolabeling reveals that DARPP-32 is present in neurons that most likely receive TH input, but it is absent from the catecholaminergic neurons themselves, with the only exception of a few cells in the suprachiasmatic nucleus of Neoceratodus and the solitary tract nucleus of Protopterus. In addition, some species differences exist in the localization of DARPP-32 cells in the pallium, lateral amygdala, thalamus, prethalamus, and octavolateral area. In general, the present study demonstrates that the distribution pattern of DARPP-32, and its relationship with TH, is largely comparable to those reported for tetrapods, highlighting a shared situation among all sarcopterygians.

Neuroscience ◽  
2018 ◽  
Vol 379 ◽  
pp. 219-227 ◽  
Author(s):  
Sojin Kim ◽  
Sung-Moon Kim ◽  
Bermseok Oh ◽  
Jihoon Tak ◽  
Eunhee Yang ◽  
...  

2013 ◽  
Vol 109 (2) ◽  
pp. 507-517 ◽  
Author(s):  
Stuart J. McDougall ◽  
Michael C. Andresen

Cranial primary afferents from the viscera enter the brain at the solitary tract nucleus (NTS), where their information is integrated for homeostatic reflexes. The organization of sensory inputs is poorly understood, despite its critical impact on overall reflex performance characteristics. Single afferents from the solitary tract (ST) branch within NTS and make multiple contacts onto individual neurons. Many neurons receive more than one ST input. To assess the potential interaction between converging afferents and proximal branching near to second-order neurons, we probed near the recorded soma in horizontal slices from rats with focal electrodes and minimal shocks. Remote ST shocks evoked monosynaptic excitatory postsynaptic currents (EPSCs), and nearby focal shocks also activated monosynaptic EPSCs. We tested the timing and order of stimulation to determine whether focal shocks influenced ST responses and vice versa in single neurons. Focal-evoked EPSC response profiles closely resembled ST-EPSC characteristics. Mean synaptic jitters, failure rates, depression, and phenotypic segregation by capsaicin responsiveness were indistinguishable between focal and ST-evoked EPSCs. ST-EPSCs failed to affect focal-EPSCs within neurons, indicating that release sites and synaptic terminals were functionally independent and isolated from cross talk or neurotransmitter overflow. In only one instance, focal shocks intercepted and depleted the ST axon generating evoked EPSCs. Despite large numbers of functional contacts, multiple afferents do not appear to interact, and ST axon branches may be limited to close to the soma. Thus single or multiple primary afferents and their presynaptic active release sites act independently when they contact single second-order NTS neurons.


Endocrinology ◽  
2007 ◽  
Vol 148 (10) ◽  
pp. 5095-5104 ◽  
Author(s):  
Simone L. Meddle ◽  
Valerie R. Bishop ◽  
Effimia Gkoumassi ◽  
Fred W. van Leeuwen ◽  
Alison J. Douglas

Oxytocin plays a pivotal role in rat parturition, acting within the brain to facilitate its own release in the supraoptic nucleus (SON) and paraventricular nucleus, and to stimulate maternal behavior. We investigated oxytocin receptor (OTR) expression and activation perinatally. Using a 35S-labeled riboprobe complementary to OTR mRNA, OTR expression was quantified in proestrus virgin, 21- and 22-day pregnant, parturient (90 min. from pup 1 birth), and postpartum (4–12 h from parturition) rats. Peak OTR mRNA expression was observed at parturition in the SON, brainstem regions, medial preoptic area (mPOA), bed nucleus of the stria terminalis (BnST), and olfactory bulbs, but there was no change in the paraventricular nucleus and lateral septum. OTR mRNA expression was increased on the day of expected parturition in the SON and brainstem, suggesting that oxytocin controls the pathway mediating input from uterine signals. Likewise, OTR mRNA expression was increased in the mPOA and BnST during labor/birth. In the olfactory bulbs and medial amygdala, parturition induced increased OTR mRNA expression compared with pre-parturition, reflecting their immediate response to new stimuli at birth. Postpartum OTR expression in all brain regions returned to levels observed in virgin rats. Parturition significantly increased the number of double-immunolabeled cells for Fos and OTR within the SON, brainstem, BnST, and mPOA regions compared with virgin rats. Thus, there are dynamic region-dependent changes in OTR-expressing cells at parturition. This altered OTR distribution pattern in the brain perinatally reflects the crucial role oxytocin plays in orchestrating both birth and maternal behavior.


1992 ◽  
Vol 262 (5) ◽  
pp. R865-R871
Author(s):  
J. C. Dunbar ◽  
E. Ergene ◽  
G. F. Anderson ◽  
R. A. Barraco

It has been observed that diabetes results in increased neuropeptide Y (NPY) in various brain regions, especially the paraventricular nucleus, which projects to the nucleus of the solitary tract (NTS). Because previous studies indicated a pathophysiological relationship between diabetes and NPY, we investigated the effect of diabetes on the sensitivity of NTS-mediated responses to NPY administration. Rats were made diabetic using streptozocin (55 mg/kg iv) and maintained for 48 to 50 days. Normal and streptozocin-diabetic rats were anesthetized with urethan and alpha-chloralose, instrumented for cardiovascular and respiratory monitoring, and positioned in a stereotaxic apparatus. The brain stem was exposed surgically. NPY (0.15 nmol/kg) was microinjected into the NTS and the cardiovascular and respiratory parameters were monitored for 60 min. Diabetes increased systolic (SAP), diastolic (DAP), and mean (Pa) blood pressure but not pulse pressure (PP) and heart rate (HR). Respiratory parameters were not altered. NPY significantly decreased SAP, DAP, Pa, PP, HR, respiratory rate, and minute volume in normal animals. In diabetic animals, NPY also decreased SAP, DAP, and Pa but pronouncedly increased PP. Although NPY decreased the SAP and Pa in diabetic animals, the response was attenuated compared with normal animals. The respiratory parameters and HR of diabetic animals, unlike normal animals, did not respond to NPY administration. We conclude that chronic diabetes results in a decreased sensitivity to NTS-mediated responses and that the hyporesponsiveness of the NTS to NPY modulation may be important in the tendency toward elevated blood pressure and hypertension in diabetes.


1994 ◽  
Vol 130 (3) ◽  
pp. 291-296 ◽  
Author(s):  
Xin Gao ◽  
Paddy Phillips ◽  
Brian Oldfield ◽  
Deborah Trinder ◽  
John Risvanis ◽  
...  

Gao X, Phillips P, Oldfield B, Trinder D, Risvanis J, Stephenson J, Johnston C. Androgen manipulation and vasopressin binding in the rat brain and peripheral organs. Eur J Endocrinol 1994;130:291–6. ISSN 0804–4643 It is now widely recognized that there is a sexual dimorphism in the development of arginine vasopressin (AVP) immunoreactivity in certain parts of the brain, and that changes in brain AVP immunoreactivity change with manipulation of androgen status. The aim of this experiment was to determine specifically any AVP receptor changes in response to manipulation of androgen levels using a selective V1 antagonist radioligand. Following castration, plasma testosterone levels fell and AVP immunoreactivity was reduced in the lateral septum and bed nucleus of the stria terminalis. With testosterone supplementation in castrated animals, the immunoreactivity in these regions was restored to a higher degree than in sham-operated animals. Central and peripheral V1 AVP receptor binding (as determined using the selective AVP V1 antagonist radioligand [125I](d(CH2)5,sarcosine7)AVP was not changed in any of the brain regions studied or in liver or kidney membranes from the three groups. This study demonstrates that there is no change in brain AVP receptor binding despite changes in regional AVP immunoreactivity in the brain, and excludes any confounding interaction with changes in oxytocin receptors. P A Phillips, Department of Medicine, The University of Melbourne, Austin Hospital, Heidelberg, Victoria 3084, Australia


Author(s):  
M. C. Whitehead

A fundamental problem in taste research is to determine how gustatory signals are processed and disseminated in the mammalian central nervous system. An important first step toward understanding information processing is the identification of cell types in the nucleus of the solitary tract (NST) and their synaptic relationships with oral primary afferent terminals. Facial and glossopharyngeal (LIX) terminals in the hamster were labelled with HRP, examined with EM, and characterized as containing moderate concentrations of medium-sized round vesicles, and engaging in asymmetrical synaptic junctions. Ultrastructurally the endings resemble excitatory synapses in other brain regions.Labelled facial afferent endings in the RC subdivision synapse almost exclusively with distal dendrites and dendritic spines of NST cells. Most synaptic relationships between the facial synapses and the dendrites are simple. However, 40% of facial endings engage in complex synaptic relationships within glomeruli containing unlabelled axon endings particularly ones termed "SP" endings. SP endings are densely packed with small, pleomorphic vesicles and synapse with both the facial endings and their postsynaptic dendrites by means of nearly symmetrical junctions.


2020 ◽  
Vol 21 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Gautam Bhardwaj ◽  
Shikha Goswami ◽  
Rajiv Kumar Tonk ◽  
Ramesh K. Goyal ◽  
...  

: The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhort tumor of star-shaped glial cell in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorder like neurofibromatosis and schwanomatosis which develop the tumor in the nervous system. The management of GBM with chemo-radio therapy leads to resistance and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind failure of drugs are due to DNA alkylation in cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bio-active compounds from plants known as phytochemicals, serve as vital sources for anti-cancer drugs. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, podophyllotoxin analogs, camptothecin, curcumin, aloe emodin, quercetin, berberine e.t.c. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancers. However the challenges posed by the presence of BBB/BBTB to restrict passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review we integrated nanotech as novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.


2020 ◽  
Vol 20 (9) ◽  
pp. 800-811 ◽  
Author(s):  
Ferath Kherif ◽  
Sandrine Muller

In the past decades, neuroscientists and clinicians have collected a considerable amount of data and drastically increased our knowledge about the mapping of language in the brain. The emerging picture from the accumulated knowledge is that there are complex and combinatorial relationships between language functions and anatomical brain regions. Understanding the underlying principles of this complex mapping is of paramount importance for the identification of the brain signature of language and Neuro-Clinical signatures that explain language impairments and predict language recovery after stroke. We review recent attempts to addresses this question of language-brain mapping. We introduce the different concepts of mapping (from diffeomorphic one-to-one mapping to many-to-many mapping). We build those different forms of mapping to derive a theoretical framework where the current principles of brain architectures including redundancy, degeneracy, pluri-potentiality and bow-tie network are described.


Author(s):  
Antonina Kouli ◽  
Marta Camacho ◽  
Kieren Allinson ◽  
Caroline H. Williams-Gray

AbstractParkinson’s disease dementia is neuropathologically characterized by aggregates of α-synuclein (Lewy bodies) in limbic and neocortical areas of the brain with additional involvement of Alzheimer’s disease-type pathology. Whilst immune activation is well-described in Parkinson’s disease (PD), how it links to protein aggregation and its role in PD dementia has not been explored. We hypothesized that neuroinflammatory processes are a critical contributor to the pathology of PDD. To address this hypothesis, we examined 7 brain regions at postmortem from 17 PD patients with no dementia (PDND), 11 patients with PD dementia (PDD), and 14 age and sex-matched neurologically healthy controls. Digital quantification after immunohistochemical staining showed a significant increase in the severity of α-synuclein pathology in the hippocampus, entorhinal and occipitotemporal cortex of PDD compared to PDND cases. In contrast, there was no difference in either tau or amyloid-β pathology between the groups in any of the examined regions. Importantly, we found an increase in activated microglia in the amygdala of demented PD brains compared to controls which correlated significantly with the extent of α-synuclein pathology in this region. Significant infiltration of CD4+ T lymphocytes into the brain parenchyma was commonly observed in PDND and PDD cases compared to controls, in both the substantia nigra and the amygdala. Amongst PDND/PDD cases, CD4+ T cell counts in the amygdala correlated with activated microglia, α-synuclein and tau pathology. Upregulation of the pro-inflammatory cytokine interleukin 1β was also evident in the substantia nigra as well as the frontal cortex in PDND/PDD versus controls with a concomitant upregulation in Toll-like receptor 4 (TLR4) in these regions, as well as the amygdala. The evidence presented in this study show an increased immune response in limbic and cortical brain regions, including increased microglial activation, infiltration of T lymphocytes, upregulation of pro-inflammatory cytokines and TLR gene expression, which has not been previously reported in the postmortem PDD brain.


Sign in / Sign up

Export Citation Format

Share Document