Enhanced Vascular Biocompatibility and Remodeling of Decellularized and Secured Xenogeneic/Allogeneic Matrices in a Porcine Model

2018 ◽  
Vol 59 (1-2) ◽  
pp. 58-71 ◽  
Author(s):  
Mathieu van Steenberghe ◽  
Thomas Schubert ◽  
Caroline Bouzin ◽  
Carlo Caravaggio ◽  
Yves Guiot ◽  
...  

Background/Purpose: Calcifications and absence of growth potential are the major drawbacks of glutaraldehyde-treated prosthesis. Decellularized and secured xeno-/allogeneic matrices were assessed in a preclinical porcine model for biocompatibility and vascular remodeling in comparison to glutaraldehyde-fixed bovine pericardium (GBP; control). Methods: Native human (fascia lata, pericardium) and porcine tissues (peritoneum) were used and treated. In vitro, biopsies were performed before and after treatment to assess decellularization (hematoxylin and eosin/DAPI). In vivo, each decellularized and control tissue sample was implanted subcutaneously in 4 mini-pigs. In addition, 9 mini-pigs received a patch or a tubularized prosthesis interposition on the carotid artery or abdominal aorta of decellularized (D) human fascia lata (DHFL; n = 4), human pericardium (DHP; n = 9), porcine peritoneum (DPPt; n = 7), and control tissue (GBP: n = 3). Arteries were harvested after 1 month and subcutaneous samples after 15–30 days. Tissues were processed for hematoxylin and eosin/von Kossa staining and immunohistochemistry for CD31, alpha-smooth muscle actin, CD3, and CD68. Histomorphometry was achieved by point counting. Results: A 95% decellularization was confirmed for DHP and DPPt, and to a lower degree for DHFL. In the subcutaneous protocol, CD3 infiltration was significantly higher at day 30 in GBP and DHFL, and CD68 infiltration was significantly higher for GBP (p < 0.05). In intravascular study, no deaths, aneurysms, or pseudoaneurysms were observed. Inflammatory reaction was significantly higher for DHFL and GBP (p < 0.05), while it was lower and comparable for DHP/DPPt. DHP and DPPt showed deeper recellularization, and a new arterial wall was characterized. Conclusions: In a preclinical model, DPPt and DHP offered better results than conventional commercialized GBP for biocompatibility and vascular remodeling.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Laura Ruggeri ◽  
Francesca Nespoli ◽  
Giuseppe Ristagno ◽  
Francesca Fumagalli ◽  
Antonio Boccardo ◽  
...  

AbstractPrimary vasopressor efficacy of epinephrine during cardiopulmonary resuscitation (CPR) is due to its α-adrenergic effects. However, epinephrine plays β1-adrenergic actions, which increasing myocardial oxygen consumption may lead to refractory ventricular fibrillation (VF) and poor outcome. Effects of a single dose of esmolol in addition to epinephrine during CPR were investigated in a porcine model of VF with an underlying acute myocardial infarction. VF was ischemically induced in 16 pigs and left untreated for 12 min. During CPR, animals were randomized to receive epinephrine (30 µg/kg) with either esmolol (0.5 mg/kg) or saline (control). Pigs were then observed up to 96 h. Coronary perfusion pressure increased during CPR in the esmolol group compared to control (47 ± 21 vs. 24 ± 10 mmHg at min 5, p < 0.05). In both groups, 7 animals were successfully resuscitated and 4 survived up to 96 h. No significant differences were observed between groups in the total number of defibrillations delivered prior to final resuscitation. Brain histology demonstrated reductions in cortical neuronal degeneration/necrosis (score 0.3 ± 0.5 vs. 1.3 ± 0.5, p < 0.05) and hippocampal microglial activation (6 ± 3 vs. 22 ± 4%, p < 0.01) in the esmolol group compared to control. Lower circulating levels of neuron specific enolase were measured in esmolol animals compared to controls (2[1–3] vs. 21[16–52] ng/mL, p < 0.01). In this preclinical model, β1-blockade during CPR did not facilitate VF termination but provided neuroprotection.


2018 ◽  
Vol 119 (12) ◽  
pp. 1508-1517 ◽  
Author(s):  
Richard J. McGregor ◽  
You-Ying Chau ◽  
Timothy J. Kendall ◽  
Mara Artibani ◽  
Nicholas Hastie ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 6317-6327 ◽  

In this study, a novel Polycaprolactone suture assembled with Tadalafil was investigated to improve wound healing processes via vascular stimulation. Tadalafil/Polycaprolactone (TP) suture was developed by the electrospinning method. The designed suture was characterized by SEM, mechanical properties assessments, tensile strength measurements and the drug release study. For in vivo tests, rats were classified into two study groups. An incision was made on their back skin and they were sutured with TP suture and Polycaprolactone suture as control. Rats were sacrificed at 7 days following surgery for histopathological examinations with Hematoxylin and Eosin staining. Results of Tensile test demonstrated that the lowest tensile strength belonged to 3 and 4 % wt and the highest tensile strength belonged to 1 and 2 % wt of TP suture. The rate of Tadalafil release showed that the highest drug release was related to 3 and 4% wt which were about 125 to 210 μg during 15 days. The histopathology revealed that the number of blood vessels, collagen fibers, fibroblast, polymorphonuclear leukocytes, and epithelization was remarkable in Tadalafil/Polycaprolactone group during 7-day. A novel Tadalafil/Polycaprolactone suture improved the processes of wound healing by releasing the Tadalafil drug around the sutured wound and can be used in medical applications.


1985 ◽  
Vol 63 (4) ◽  
pp. 711-715 ◽  
Author(s):  
R. Hodgins ◽  
R. B. van Huystee

The effect of chilling temperatures on the porphyrin pathway leading to chlorophyll was studied in Seneca Chief hybrid sweet corn. One-week-old seedlings grown at 28 °C in a 14 h light: 10 h dark photoperiod synthesize negligible amounts of chlorophyll when exposed to 12 °C for a subsequent 6 d. When the chilled plant is then brought back to 28 °C, chlorophyll synthesis is restored to control levels. Little difference in carotenoid content was detected between chill-stressed and control tissue even after 4 d of stress. Small differences in the chlorophyll content per 106 chloroplasts could be detected between stressed and control seedlings. Etiolated seedlings synthesize negligible amounts of chlorophyll or its precursors when illuminated at 12 °C. Incubation of tissue with aminolevulinic acid at various temperatures from 12 to 22 °C resulted in an accumulation of precursors comparable to 28 °C control tissue. The ability of etiolated tissue to accumulate aminolevulinic acid was negligible when illuminated at 12 °C as compared with that in tissue illuminated at 28 °C.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Steven J Forrester ◽  
Tatsuo Kawai ◽  
Katherine J Elliott ◽  
Takashi Obama ◽  
Takehiko Takayanagi ◽  
...  

We have recently reported that caveolin-1 (Cav1) enriched membrane microdomains in vascular smooth muscle cells (VSMC) mediate a metalloprotease ADAM17-dependent EGF receptor (EGFR) transactivation, which is linked to vascular remodeling induced by AngII. We have tested our hypothesis that Cav1, a major structural protein of caveolae, plays a critical role for development of vascular remodeling by AngII via regulation of ADAM17 and EGFR. Here, 8 week old male Cav1-/- and control Cav+/+ wild-type mice (WT) were infused with AngII (1 μg/kg/min) for 2 weeks to induce vascular remodeling and hypertension. Upon AngII infusion, histological assessments demonstrated medial hypertrophy and perivascular fibrosis of coronary and renal arteries in WT mice compared with saline-infused control mice. The AngII-infused WT mice also showed a phenotype of cardiac hypertrophy with increased HW/BW ratio (mg/g: 8.0±0.6 vs 5.7±0.7 p<0.01) compared with WT control. In contrast to AngII-infused WT mice, Cav1-/- mice with AngII showed attenuation of vascular remodeling but not cardiac hypertrophy ; HW/BW ratio (8.6±0.5 vs 6.4±0.2 p<0.05). Similar levels of AngII-induced hypertension were observed in both WT and Cav1-/- mice assessed by telemetry (MAP mmHg: 142±9 vs 154±20). In WT mice, Ang II enhanced ADAM17 expression and phospho-Tyr EGFR staining in heart and kidney vasculature. These events were attenuated in vessels from Cav1-/- mice infused with AngII. In addition, IHC analysis revealed less ER stress in heart and kidney vasculature of AngII-infused Cav1-/- mice compared with WT mice. Enhanced Cav1 and VCAM-1 expression were also observed in the aorta from AngII-infused WT mice but not in Cav1-/- aorta. These data suggest that Cav1 and presumably vascular caveolae play critical roles for vascular remodeling and inflammation via induction of ADAM17 and activation of EGFR independent of blood pressure or cardiac hypertrophy regulation.


Author(s):  
Himalaya Bhardwaj ◽  
Chanchal Singh ◽  
Shashi Nayyar

Background: The present study was planned to assess the biochemical and micro-minerals profile in blood and other tissues of buffaloes environmentally exposed to heavy metals. Methods: Tissues (liver and kidney) and blood samples (n=50) were collected from local abattoir. Based on the level of heavy metals, animals were classified as exposed and control was found to have heavy metals in normal range. Blood and tissue sample from both groups were analyzed for micro-minerals, antioxidant status, metabolic profile and expression of metallothionein-2 (MT-2).Result: Exposed group was found to have significantly (p less than 0.05) higher level of arsenic and chromium as compared to the control group. Level of Copper (Cu) and zinc (Zn) were observed to be significantly (p less than 0.05) higher in exposed animals as compared to control but their concentrations were below the permissible limit in both the groups. Cobalt (Co) and iron (Fe) level were normal in all tissues but Fe level was lower than permissible limit in blood. Malonldialdehyde (MDA), the activities of superoxide dismutase (SOD) and catalase (CAT) was found to be significantly increased (p less than 0.05) in tissues and blood of exposed group. The exposed buffaloes were found to have significantly (p less than 0.05) increased glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), creatine kinase (CK), alkaline phosphatase (ALP), urea and creatinine level as compared to control group. Fold change expression of metallothionein (MT-2), had maximum in liver, followed by kidney and blood as compared to control group. The study concluded that heavy metals exposure and low concentration of micro-minerals in buffaloes could result in oxidative damage and alterations in the expression of metallothionein.


2020 ◽  
pp. 251512742096043
Author(s):  
Desarae Mueller-Fichepain ◽  
Cheryl McConnell ◽  
Myles P. Gartland

This study examines the influence U.S. college/university level (2-year/4-year) and control (public/private) have on the female-awarded proportion of their entrepreneurship degrees and certificates (EDCs). It also examines trends over a decade, 2006-2016. Integrated Postsecondary Education Data System (IPEDS) data on U.S. institutions awarding Classification of Instructional Programs (CIP) 52.07 (Entrepreneurship and Small Business degrees/certificates) in 2006, 2011, and/or 2016 is analyzed using ANOVA/ANCOVA/repeated measures methods. Surprisingly, even with the growing focus on female entrepreneurship, results did not show significant increases in the female-awarded proportion of EDCs over the ten years. Closer examination of 2016 data shows 2-year public institutions confer a significantly larger percentage of their EDCs to women compared to both 4-year public and private institutions providing evidence that institution level and control influence the proportion and suggesting that 4-year institutions may still be gendered in terms of entrepreneurship. Entrepreneurship education has been empirically shown to augment entrepreneurial human and social capital, which is of key importance in entrepreneurship, particularly high-growth potential female businesses. For this reason, these results have important implications for post-secondary institution leaders and entrepreneurship educators, and serves as a call to action to pro-actively assess their environments and curriculum for potential gender biases. Suggestions provided.


1981 ◽  
Author(s):  
M Johnson ◽  
A H Reece ◽  
H E Harrison

Vascular prostacyclin (PGI2) generation is decreased in diabetes in experimental animals and in man. In this study, we have investigated the possibility that levels of a plasma factor (s) modifying PGI2 production are abnormal in diabetes. Aortic rings from diabetic or age-matched control rats were washed in Krebs buffer to reduce endogenous PGI2 formation. Addition of rat or human cell-free plasma stimulated PGI2 release by the “exhausted” vascular rings, and this activity was still present after freezing and thawing. The stimulation of PGI2 synthesis by control tissue was significantly greater (p<0.001) with plasma from diabetic animals (0.25±0.04ng/mg) than from controls (0.05±0.02ng/mg). Similarly, plasma from diabetic volunteers showed increased (p<0.05) PGI2-stimulatory activity. Diabetic tissue was less responsive than control tissue to stimulation by diabetic plasma, and the difference between diabetic and control plasmas was not apparent. This suggests that the abnormal vascular PGI2 synthesis in diabetes may be due to a defect in the vessel wall and not to lack of stimulatory plasma factors.


1990 ◽  
Vol 72 (6) ◽  
pp. 933-940 ◽  
Author(s):  
Mark C. Preul ◽  
Phillip B. Long ◽  
Jeffrey A. Brown ◽  
Manuel E. Velasco ◽  
Michael T. Weaver

✓ The histopathological and autonomic effects of percutaneous trigeminal ganglion compression for trigeminal neuralgia were studied in New Zealand White rabbits. Drops in mean arterial blood pressure of 38% and in heart rate of 30% were observed during compression (p < 0.0001). Corneal reflex, pinprick sensation, and mastication strength were intact in 13 of 14 rabbits after compression. These findings resembled the effects of percutaneous compression in humans and suggested that the New Zealand White rabbit is a useful model for the study of percutaneous compression. Trigeminal sensory roots and ganglia from 14 rabbits killed at intervals from 1 to 84 days after percutaneous compression were sectioned and stained using immunoperoxidase for neurofilaments, hematoxylin and eosin, luxol fast blue, and cresyl echt violet. Focal axonal damage and demyelination were present 7 days after compression. No difference could be detected in the perikaryonal distribution of neurofilaments between compressed and control trigeminal ganglia. Focal demyelination and Schwann cell proliferation preceding remyelination were present in the trigeminal sensory root at 84 days. Differential injury of axons compared to trigeminal ganglion cell bodies suggests that axonal regeneration is possible and may contribute to the recovery of motor and sensory function in patients after percutaneous compression.


Sign in / Sign up

Export Citation Format

Share Document