The Genetics Analysis of Molecular Pathogenesis for Alzheimer's Disease

2020 ◽  
Vol 83 (5) ◽  
pp. 458-467
Author(s):  
Guanchuan Lin ◽  
Kaiyuan Ji ◽  
Shiyu Li ◽  
Wenli Ma ◽  
Xinghua Pan

<b><i>Introduction:</i></b> The molecular pathogenesis of Alzheimer’s disease (AD) is still not clear, and the relationship between gene expression profile for different brain regions has not been studied. <b><i>Objective:</i></b> Bioinformatic analysis at the genetic level has become the best way for the pathogenesis research of AD, which can analyze the abovementioned relationship. <b><i>Methods:</i></b> In this study, the datasets of AD were obtained from the Gene Expression Omnibus (GEO), and Qlucore Omics Explorer (QOE) software was used to screen differentially expressed genes of GSE36980 and GSE9770 and verify gene expression of GSE63060. The Gene Ontology (GO) function enrichment analysis of these selected genes was conducted by Database for Annotation, Visualization, and Integrated Discovery (DAVID), and then the gene/protein interaction network was established by STRING to find the related proteins. R language was used for drafting maps and plots. <b><i>Results:</i></b> There were 20 differentially expressed genes related to AD selected from GSE36980 (<i>p</i> = 6.2e<sup>−6</sup>, <i>q</i> = 2.9422e<sup>−4</sup>) and GSE9770 (<i>p</i> = 3.3e<sup>−4</sup>, <i>q</i> = 0.016606). Their expression levels of the AD group were lower than those in the control group and varied among different brain regions. Cellular morphogenesis and establishment or maintenance of cell polarity were enriched, and <i>LRRTM1</i> and <i>RASAL1</i> were identified by the integration network. Moreover, the analysis of GSE63060 verified the expression level of <i>LRRTM1</i> and <i>RASAL1</i> in Alzheimer’s patients, which was much lower than that in normal people aged &#x3e;65 years. <b><i>Conclusions:</i></b> The pathogenesis of AD at molecular levels may link to cell membrane structures and signal transduction; hence, a list of 20 genes, including <i>LRRTM1</i> and <i>RASAL1,</i>potentially are important for the discovery of treatment target or molecular marker of AD.

Author(s):  
Shumei Zhang ◽  
Haoran Jiang ◽  
Bo Gao ◽  
Wen Yang ◽  
Guohua Wang

Background: Breast cancer is the second largest cancer in the world, the incidence of breast cancer continues to rise worldwide, and women’s health is seriously threatened. Therefore, it is very important to explore the characteristic changes of breast cancer from the gene level, including the screening of differentially expressed genes and the identification of diagnostic markers.Methods: The gene expression profiles of breast cancer were obtained from the TCGA database. The edgeR R software package was used to screen the differentially expressed genes between breast cancer patients and normal samples. The function and pathway enrichment analysis of these genes revealed significant enrichment of functions and pathways. Next, download these pathways from KEGG website, extract the gene interaction relations, construct the KEGG pathway gene interaction network. The potential diagnostic markers of breast cancer were obtained by combining the differentially expressed genes with the key genes in the network. Finally, these markers were used to construct the diagnostic prediction model of breast cancer, and the predictive ability of the model and the diagnostic ability of the markers were verified by internal and external data.Results: 1060 differentially expressed genes were identified between breast cancer patients and normal controls. Enrichment analysis revealed 28 significantly enriched pathways (p &lt; 0.05). They were downloaded from KEGG website, and the gene interaction relations were extracted to construct the gene interaction network of KEGG pathway, which contained 1277 nodes and 7345 edges. The key nodes with a degree greater than 30 were extracted from the network, containing 154 genes. These 154 key genes shared 23 genes with differentially expressed genes, which serve as potential diagnostic markers for breast cancer. The 23 genes were used as features to construct the SVM classification model, and the model had good predictive ability in both the training dataset and the validation dataset (AUC = 0.960 and 0.907, respectively).Conclusion: This study showed that the difference of gene expression level is important for the diagnosis of breast cancer, and identified 23 breast cancer diagnostic markers, which provides valuable information for clinical diagnosis and basic treatment experiments.


2019 ◽  
Author(s):  
Qinyu Ge ◽  
Erteng Jia ◽  
Min Pan ◽  
Zhiyu Liu ◽  
Ying Zhou ◽  
...  

Abstract BackgroundParkinson’s disease (PD) is the second most common neurodegenerative disease and many studies have researched its complex pathophysiological processes. However, it is unclear how PD affects the structure of transcripts in different brain regions and how changes in the transcriptomes in different brain regions affect the pathogenesis of PD.ResultsWe generated a PD mouse model by injecting with MPTP solution. RNA sequencing was performed in the cerebral cortex, hippocampus, striatum, and cerebellum regions of the PD mouse. Compared with the control group, these four brain regions showed significant transcriptomic alterations, with the most differentially expressed genes (DEGs) found in the striatum region. The main DEGs were Lrrk2, Mtor, Gxylt1, C920006o11Rik, Vdac1, Ano3, Drd4, and Ncan. DEGs were enriched using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analysis methods, which identified significant GO and molecular pathways. In addition, we used network biology methods to analyze protein–protein relationships, which can accelerate the identification of new PD drugs. The results showed that LRRK2, DRD2, IGF-1, GNAI1, GNAI3, PRKACA, PPP2R5C, and PIK3R1 played a major role in protein regulation.ConclusionsOur analysis showed that these DEGs and proteins play an important role in the occurrence and development of PD. Our study also highlighted the potential use of this transcriptomic data for therapeutic strategies and treatment of PD.


2021 ◽  
Author(s):  
Wenrui Xue ◽  
Xin Zheng ◽  
Xiaopeng Hu ◽  
Yu Zhang

Abstract Background: To study the differential gene expression and clinical significance in HIVIIs (human immunodeficiency virus-infected individuals) with penile squamous cell carcinoma.Methods: At our hospital from 2019 to 2020, we selected 6 samples of HIV-related penile squamous cell carcinoma for the experimental group and 6 samples of non-HIV-related penile squamous cell carcinoma for the control group. Transcriptome sequencing of sample mRNAs was performed by high-throughput sequencing. Differential gene expression analysis, differential GO (Gene Ontology) enrichment analysis and differential KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis were carried out, and the RPKM (reads per kilobase per million reads) value was used as a measure of gene expression.Results: A total of 2418 differentially expressed genes were obtained, of which 663 were upregulated and 1755 were downregulated (absolute value of logFC >1.0 and p value<0.05 FDR < 0.05). On the basis of the significance of the GO enrichment analysis, we found that the TP63 (tumor protein p63) gene was significantly upregulated and that the LMO4 (LIM domain only 4) gene was significantly downregulated in the experimental group compared with the control group. KEGG pathway analysis of the differentially expressed genes revealed that DNA replication was the most significant pathway associated with the upregulated genes and CAM (cell adhesion molecule) metabolism was the most significant pathway associated with the downregulated genes.Conclusions: The gene expression profiles of HIV-related penile squamous cell carcinoma and non-HIV-related penile squamous cell carcinoma are significantly different and involve significant GO enrichment and KEGG metabolic pathways, and this is very meaningful for the study of NADCs (non-AIDS-defining cancers). Differential expression of genes may be an important target for the prevention of penile squamous cell carcinoma in HIVIIs.


2020 ◽  
Author(s):  
Jingdi Yang ◽  
Bo Peng ◽  
Xianzheng Qin ◽  
Tian Zhou

Abstract Background: Although the morbidity and mortality of gastric cancer are declining, gastric cancer is still one of the most common causes of death. Early detection of gastric cancer is of great help to improve the survival rate, but the existing biomarkers are not sensitive to diagnose early gastric cancer. The aim of this study is to identify the novel biomarkers for gastric cancer.Methods: Three gene expression profiles (GSE27342, GSE63089, GSE33335) were downloaded from Gene Expression Omnibus database to select differentially expressed genes. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were performed to explore the biological functions of differentially expressed genes. Cytoscape was utilized to construct protein-protein interaction network and hub genes were analyzed by plugin cytoHubba of Cytoscape. Furthermore, Gene Expression Profiling Interactive Analysis and Kaplan-Meier plotter were used to verify the identified hub genes.Results: 35 overlapping differentially expressed genes were screened from gene expression datasets, which consisted of 11 up-regulated genes and 24 down-regulated genes. Gene Ontology functional enrichment analysis revealed that differentially expressed genes were significantly enriched in digestion, regulation of biological quality, response to hormone and steroid hormone, and homeostatic process. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed differentially expressed genes were enriched in the secretion of gastric acid and collecting duct acid, leukocyte transendothelial migration and ECM-receptor interaction. According to protein-protein interaction network, 10 hub genes were identified by Maximal Clique Centrality method.Conclusion: By using bioinformatics analysis, COL1A1, BGN, THY1, TFF2 and SST were identified as the potential biomarkers for early detection of gastric cancer.


Author(s):  
Xitong Yang ◽  
Pengyu Wang ◽  
Shanquan Yan ◽  
Guangming Wang

AbstractStroke is a sudden cerebrovascular circulatory disorder with high morbidity, disability, mortality, and recurrence rate, but its pathogenesis and key genes are still unclear. In this study, bioinformatics was used to deeply analyze the pathogenesis of stroke and related key genes, so as to study the potential pathogenesis of stroke and provide guidance for clinical treatment. Gene Expression profiles of GSE58294 and GSE16561 were obtained from Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) were identified between IS and normal control group. The different expression genes (DEGs) between IS and normal control group were screened with the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID) and gene set enrichment analysis (GSEA), the function and pathway enrichment analysis of DEGS were performed. Then, a protein–protein interaction (PPI) network was constructed via the Search Tool for the Retrieval of Interacting Genes (STRING) database. Cytoscape with CytoHubba were used to identify the hub genes. Finally, NetworkAnalyst was used to construct the targeted microRNAs (miRNAs) of the hub genes. A total of 85 DEGs were screened out in this study, including 65 upward genes and 20 downward genes. In addition, 3 KEGG pathways, cytokine − cytokine receptor interaction, hematopoietic cell lineage, B cell receptor signaling pathway, were significantly enriched using a database for labeling, visualization, and synthetic discovery. In combination with the results of the PPI network and CytoHubba, 10 hub genes including CEACAM8, CD19, MMP9, ARG1, CKAP4, CCR7, MGAM, CD79A, CD79B, and CLEC4D were selected. Combined with DEG-miRNAs visualization, 5 miRNAs, including hsa-mir-146a-5p, hsa-mir-7-5p, hsa-mir-335-5p, and hsa-mir-27a- 3p, were predicted as possibly the key miRNAs. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of ischemic stroke, and provide a new strategy for clinical therapy.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1037.2-1038
Author(s):  
X. Sun ◽  
S. X. Zhang ◽  
S. Song ◽  
T. Kong ◽  
C. Zheng ◽  
...  

Background:Psoriasis is an immune-mediated, genetic disease manifesting in the skin or joints or both, and also has a strong genetic predisposition and autoimmune pathogenic traits1. The hallmark of psoriasis is sustained inflammation that leads to uncontrolled keratinocyte proliferation and dysfunctional differentiation. And it’s also a chronic relapsing disease, which often necessitates a long-term therapy2.Objectives:To investigate the molecular mechanisms of psoriasis and find the potential gene targets for diagnosis and treating psoriasis.Methods:Total 334 gene expression data of patients with psoriasis research (GSE13355 GSE14905 and GSE30999) were obtained from the Gene Expression Omnibus database. After data preprocessing and screening of differentially expressed genes (DEGs) by R software. Online toll Metascape3 was used to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. Interactions of proteins encoded by DEGs were discovered by Protein-protein interaction network (PPI) using STRING online software. Cytoscape software was utilized to visualize PPI and the degree of each DEGs was obtained by analyzing the topological structure of the PPI network.Results:A total of 611 DEGs were found to be differentially expressed in psoriasis. GO analysis revealed that up-regulated DEGs were mostly associated with defense and response to external stimulus while down-regulated DEGs were mostly associated with metabolism and synthesis of lipids. KEGG enrichment analysis suggested they were mainly enriched in IL-17 signaling, Toll-like receptor signaling and PPAR signaling pathways, Cytokine-cytokine receptor interaction and lipid metabolism. In addition, top 9 key genes (CXCL10, OASL, IFIT1, IFIT3, RSAD2, MX1, OAS1, IFI44 and OAS2) were identified through Cytoscape.Conclusion:DEGs of psoriasis may play an essential role in disease development and may be potential pathogeneses of psoriasis.References:[1]Boehncke WH, Schon MP. Psoriasis. Lancet 2015;386(9997):983-94. doi: 10.1016/S0140-6736(14)61909-7 [published Online First: 2015/05/31].[2]Zhang YJ, Sun YZ, Gao XH, et al. Integrated bioinformatic analysis of differentially expressed genes and signaling pathways in plaque psoriasis. Mol Med Rep 2019;20(1):225-35. doi: 10.3892/mmr.2019.10241 [published Online First: 2019/05/23].[3]Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019;10(1):1523. doi: 10.1038/s41467-019-09234-6 [published Online First: 2019/04/05].Acknowledgements:This project was supported by National Science Foundation of China (82001740), Open Fund from the Key Laboratory of Cellular Physiology (Shanxi Medical University) (KLCP2019) and Innovation Plan for Postgraduate Education in Shanxi Province (2020BY078).Disclosure of Interests:None declared


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Yunxiao Wei ◽  
Guoliang Li ◽  
Shujiang Zhang ◽  
Shifan Zhang ◽  
Hui Zhang ◽  
...  

Allopolyploidy is an evolutionary and mechanistically intriguing process involving the reconciliation of two or more sets of diverged genomes and regulatory interactions, resulting in new phenotypes. In this study, we explored the gene expression patterns of eight F2 synthetic Brassica napus using RNA sequencing. We found that B. napus allopolyploid formation was accompanied by extensive changes in gene expression. A comparison between F2 and the parent shows a certain proportion of differentially expressed genes (DEG) and activation\silent gene, and the two genomes (female parent (AA)\male parent (CC) genomes) showed significant differences in response to whole-genome duplication (WGD); non-additively expressed genes represented a small portion, while Gene Ontology (GO) enrichment analysis showed that it played an important role in responding to WGD. Besides, genome-wide expression level dominance (ELD) was biased toward the AA genome, and the parental expression pattern of most genes showed a high degree of conservation. Moreover, gene expression showed differences among eight individuals and was consistent with the results of a cluster analysis of traits. Furthermore, the differential expression of waxy synthetic pathways and flowering pathway genes could explain the performance of traits. Collectively, gene expression of the newly formed allopolyploid changed dramatically, and this was different among the selfing offspring, which could be a prominent cause of the trait separation. Our data provide novel insights into the relationship between the expression of differentially expressed genes and trait segregation and provide clues into the evolution of allopolyploids.


2021 ◽  
Author(s):  
Li Guoquan ◽  
Du Junwei ◽  
He Qi ◽  
Fu Xinghao ◽  
Ji Feihong ◽  
...  

Abstract BackgroundHashimoto's thyroiditis (HT), also known as chronic lymphocytic thyroiditis, is a common autoimmune disease, which mainly occurs in women. The early manifestation was hyperthyroidism, however, hypothyroidism may occur if HT was not controlled for a long time. Numerous studies have shown that multiple factors, including genetic, environmental, and autoimmune factors, were involved in the pathogenesis of the disease, but the exact mechanisms were not yet clear. The aim of this study was to identify differentially expressed genes (DEGs) by comprehensive analysis and to provide specific insights into HT. MethodsTwo gene expression profiles (GSE6339, GSE138198) about HT were downloaded from the Gene Expression Omnibus (GEO) database. The DEGs were assessed between the HT and normal groups using the GEO2R. The DEGs were then sent to the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The hub genes were discovered using Cytoscape and CytoHubba. Finally, NetworkAnalyst was utilized to create the hub genes' targeted microRNAs (miRNAs). ResultsA total of 62 DEGs were discovered, including 60 up-regulated and 2 down-regulated DEGs. The signaling pathways were mainly engaged in cytokine interaction and cytotoxicity, and the DEGs were mostly enriched in immunological and inflammatory responses. IL2RA, CXCL9, IL10RA, CCL3, CCL4, CCL2, STAT1, CD4, CSF1R, and ITGAX were chosen as hub genes based on the results of the protein-protein interaction (PPI) network and CytoHubba. Five miRNAs, including mir-24-3p, mir-223-3p, mir-155-5p, mir-34a-5p, mir-26b-5p, and mir-6499-3p, were suggested as likely important miRNAs in HT. ConclusionsThese hub genes, pathways and miRNAs contribute to a better understanding of the pathophysiology of HT and offer potential treatment options for HT.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8831 ◽  
Author(s):  
Xiaojiao Guan ◽  
Yao Yao ◽  
Guangyao Bao ◽  
Yue Wang ◽  
Aimeng Zhang ◽  
...  

Esophageal cancer is a common malignant tumor in the world, and the aim of this study was to screen key genes related to the development of esophageal cancer using a variety of bioinformatics analysis tools and analyze their biological functions. The data of esophageal squamous cell carcinoma from the Gene Expression Omnibus (GEO) were selected as the research object, processed and analyzed to screen differentially expressed microRNAs (miRNAs) and differential methylation genes. The competing endogenous RNAs (ceRNAs) interaction network of differentially expressed genes was constructed by bioinformatics tools DAVID, String, and Cytoscape. Biofunctional enrichment analysis was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of the screened genes and the survival of the patients were verified. By analyzing GSE59973 and GSE114110, we found three down-regulated and nine up-regulated miRNAs. The gene expression matrix of GSE120356 was calculated by Pearson correlation coefficient, and the 11696 pairs of ceRNA relation were determined. In the ceRNA network, 643 lncRNAs and 147 mRNAs showed methylation difference. Functional enrichment analysis showed that these differentially expressed genes were mainly concentrated in the FoxO signaling pathway and were involved in the corresponding cascade of calcineurin. By analyzing the clinical data in The Cancer Genome Atlas (TCGA) database, it was found that four lncRNAs had an important impact on the survival and prognosis of esophageal carcinoma patients. QRT-PCR was also conducted to identify the expression of the key lncRNAs (RNF217-AS1, HCP5, ZFPM2-AS1 and HCG22) in ESCC samples. The selected key genes can provide theoretical guidance for further research on the molecular mechanism of esophageal carcinoma and the screening of molecular markers.


2020 ◽  
Vol 9 (2) ◽  
pp. LMT30
Author(s):  
Chuanli Ren ◽  
Weixiu Sun ◽  
Xu Lian ◽  
Chongxu Han

Aim: To screen and identify key genes related to the development of smoking-induced lung adenocarcinoma (LUAD). Materials & methods: We obtained data from the GEO chip dataset GSE31210. The differentially expressed genes were screened by GEO2R. The protein interaction network of differentially expressed genes was constructed by STRING and Cytoscape. Finally, core genes were screened. The overall survival time of patients with the core genes was analyzed by Kaplan–Meier method. Gene ontology and Kyoto encyclopedia of genes and genomes bioaccumulation was calculated by DAVID. Results: Functional enrichment analysis indicated that nine key genes were actively involved in the biological process of smoking-related LUAD. Conclusion: 23 core genes and nine key genes among them were correlated with adverse prognosis of LUAD induced by smoking.


Sign in / Sign up

Export Citation Format

Share Document