Long Noncoding RNA LIPE-AS1 Drives Prostate Cancer Progression by Functioning as a Competing Endogenous RNA for microRNA-654-3p and Thereby Upregulating Hepatoma-Derived Growth Factor

2021 ◽  
pp. 1-16
Author(s):  
Boyu Tian ◽  
E. Chunxiang ◽  
Yang Xiang ◽  
Peng Teng

<b><i>Introduction:</i></b> Information regarding the expression and roles of LIPE antisense RNA 1 (LIPE-AS1) in prostate cancer (PCa) progression is currently limited. We experimentally determined LIPE-AS1 expression in PCa tissues and cell lines. The specific functions of LIPE-AS1 in the oncogenicity of PCa were explored by evaluating a series of cellular functions. Moreover, the molecular mechanisms underlying the oncogenic roles of LIPE-AS1 in PCa were investigated. <b><i>Methods:</i></b> The expression level of LIPE-AS1 was determined via quantitative reverse transcription polymerase chain reaction. Functional experiments, including the Cell Counting Kit-8 assay, Transwell migration and invasion assays, and tumor xenograft experiments, were used to determine the effects of LIPE-AS1 on PCa cells. The putative miRNA-binding LIPE-AS1 was predicted via bioinformatics analysis and further verified using the luciferase reporter and RNA immunoprecipitation assays. <b><i>Results:</i></b> LIPE-AS1 was expressed at high levels in PCa cells; this result is consistent with that of The Cancer Genome Atlas database. Patients with PCa manifesting high LIPE-AS1 expression had shorter overall survival than those manifesting low LIPE-AS1 expression. Downregulated LIPE-AS1 inhibited PCa cell proliferation, migration, and invasion in vitro and impaired tumor growth in vivo. With respect to its mechanism, LIPE-AS1 functioned as a competing endogenous RNA for microRNA-654-3p (miR-654-3p) in PCa cells, and hepatoma-derived growth factor (HDGF) was the direct target of miR-654-3p. HDGF was positively regulated by LIPE-AS1 in PCa cells via the absorption of miR-654-3p. Rescue experiments confirmed that miR-654-3p downregulation or HDGF overexpression counteracts the inhibitory effects of LIPE-AS1 depletion on PCa cell proliferation, migration, and invasion. <b><i>Conclusion:</i></b> LIPE-AS1 promotes PCa malignancy by targeting the miR-654-3p/HDGF axis. Determining the LIPE-AS1/miR-654-3p/HDGF pathway may increase our understanding of PCa pathogenesis and contribute toward a wider applied scope.

Author(s):  
Lijun Wu ◽  
Ke Li ◽  
Wei Lin ◽  
Jianjiang Liu ◽  
Qiang Qi ◽  
...  

AbstractStudies have confirmed the relationship between dysregulated long noncoding RNAs and melanoma pathogenesis. However, the regulatory functions of long intergenic non-protein coding RNA 1291 (LINC01291) in melanoma remain unknown. Therefore, we evaluated LINC01291 expression in melanoma and explored its roles in regulating tumor behaviors. Further, the molecular events via which LINC01291 affects melanoma cells were investigated. LINC01291 expression in melanoma cells was analyzed using The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction. Functional assays, including the Cell Counting Kit-8 assay, colony formation assay, flow cytometry, cell migration and invasion assays, and tumor xenograft models, were used to examine LINC01291’s role in melanoma cells. Additionally, bioinformatics analysis, RNA immunoprecipitation, luciferase reporter assay, and western blotting were conducted to determine the tumor-promoting mechanism of LINC01291. LINC01291 was upregulated in melanoma tissues and cell lines. Following LINC01291 knockdown, cell proliferation, colony formation, migration, and invasion were diminished, whereas apoptosis was enhanced and the cell cycle was arrested at G0/G1. In addition, loss of LINC01291 decreased the chemoresistance of melanoma cells to cisplatin. Furthermore, LINC01291 interference inhibited melanoma tumor growth in vivo. Mechanistically, LINC01291 functions as a competing endogenous RNA by sponging microRNA-625-5p (miR-625-5p) in melanoma cells and maintaining insulin-like growth factor 1 receptor (IGF-1R) expression. Rescue experiments revealed that the roles induced by LINC01291 depletion in melanoma cells could be reversed by suppressing miR-625-5p or overexpressing IGF-1R. Our study identified the LINC01291/miR-625-5p/IGF-1R competing endogenous RNA pathway in melanoma cells, which may represent a novel diagnostic biomarker and an effective therapeutic target for melanoma.


2021 ◽  
Author(s):  
He Liu ◽  
Xin He ◽  
Tianjiao Li ◽  
Yi Qu ◽  
Lina Xu ◽  
...  

Abstract Background: The important role of long noncoding RNAs (lncRNAs) in cancer has been demonstrated in many studies. Prostate cancer gene expression marker 1 (PCGEM1) is a lncRNA specifically expressed within the prostate and overexpressed in many cancer cells. Numerous studies have shown that PCGEM1 promotes cell proliferation, invasion and migration. However, the specific mechanism of PCGEM1 within prostate cancer (PCa) has not been elucidated. MicroRNA-506-3p (miR-506-3p) is a noncoding RNA, and studies have indicated that miR-506-3p is downregulated in prostate cancer cell lines and functions as a tumor suppressor.Methods: The TCGA (GEPIA) database (http://gepia.cancer-pku.cn/) was employed to measure PCGEM1 levels in PCa. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the PCGEM1 gene level. CCK-8 (Cell Counting Kit-8) and colony formation assays were used to detect cell proliferation, and Transwell assays were applied to assess cell invasion and migration. The interacting ability of miR-506-3p with PCGEM1 or TRIAP1 was validated through a dual-luciferase reporter assay. TRIAP1 protein expression was detected by Western blotting.Results: PCGEM1 expression was increased in PCa tissues and cells. In PCa tissues, High PCGEM1 expression was associated with high Gleason score, distant metastasis and extracapsular extension. In addition, PCGEM1 knockdown inhibited PCa cell (C4-2B and PC-3) proliferation, invasion and migration. miR-506-3p may interact with PCGEM1 or TRIAP1, and the suppressive effect of PCGEM1 knockdown was reversed when TRIAP1 or a miR-506-3p inhibitor was cotransfected.Conclusion: PCGEM1 expression increased in PCa cells and tissues, enhancing PCa cell proliferation, migration and invasion by sponging miR-506 to upregulate TRIAP1.


Pharmacology ◽  
2021 ◽  
pp. 1-15
Author(s):  
Zhaohui Zhou ◽  
Ping Yang ◽  
Binming Zhang ◽  
Maohui Yao ◽  
Yali Jia ◽  
...  

<b><i>Introduction:</i></b> In recent years, the regulatory activities of long noncoding RNAs have received increasing attention as an important research focus. This study aimed to characterize the expression and detailed roles of TTC39A antisense RNA 1 (TTC39A-AS1) in breast cancer (BC), in addition to concentrating on its downstream mechanisms. <b><i>Methods:</i></b> Quantitative RT-PCR was performed to determine the expression levels of TTC39A-AS1, microRNA-483-3p (miR-483-3p), and metastasis-associated gene 2 (MTA2). Further, the detailed functions of TTC39A-AS1 in BC cells were confirmed using the Cell Counting Kit 8 assay, flow cytometric analysis, and Transwell cell migration and invasion assays. The targeting relationship between TTC39A-AS1, miR-483-3p, and MTA2 in BC was predicted via bioinformatics analysis and further confirmed by performing the luciferase reporter assay and RNA immunoprecipitation. <b><i>Results:</i></b> TTC39A-AS1 was present in high levels in BC; this result was confirmed in our sample cohort and The Cancer Genome Atlas database. Patients with BC with a high level of TTC39A-AS1 had a shorter overall survival than those with a low level of TTC39A-AS1. Functionally, the absence of TTC39A-AS1 accelerated cell apo­ptosis but retained cell proliferation, migration, and invasion. Mechanistically, TTC39A-AS1 functioned as a competing endogenous RNA in BC by sponging miR-483-3p and thereby indirectly increasing MTA2 expression. Finally, rescue experiments revealed that the tumor-inhibiting actions of TTC39A-AS1 knockdown on the malignant characteristics of BC cells could be reversed by inhibiting miR-483-3p or upregulating MTA2. <b><i>Conclusion:</i></b> The newly identified TTC39A-AS1/miR-483-3p/MTA2 pathway was revealed to be a critical regulator in the tumorigenicity of BC, possibly offering a novel therapeutic direction for the anticancer treatment of BC.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1995
Author(s):  
Shashwat Sharad ◽  
Zsófia M. Sztupinszki ◽  
Yongmei Chen ◽  
Claire Kuo ◽  
Lakshmi Ravindranath ◽  
...  

Dysfunctions of androgen/TGF-β signaling play important roles in prostate tumorigenesis. Prostate Transmembrane Protein Androgen Induced 1 (PMEPA1) inhibits androgen and TGF-β signaling via a negative feedback loop. The loss of PMEPA1 confers resistance to androgen signaling inhibitors and promotes bone metastasis. Conflicting reports on the expression and biological functions of PMEPA1 in prostate and other cancers propelled us to investigate isoform specific functions in prostate cancer (PCa). One hundred and twenty laser capture micro-dissection matched normal prostate and prostate tumor tissues were analyzed for correlations between quantitative expression of PMEPA1 isoforms and clinical outcomes with Q-RT-PCR, and further validated with a The Cancer Genome Atlas (TCGA) RNA-Seq dataset of 499 PCa. Cell proliferation was assessed with cell counting, plating efficiency and soft agar assay in androgen responsive LNCaP and TGF-β responsive PC3 cells. TGF-β signaling was measured by SMAD dual-luciferase reporter assay. Higher PMEPA1-a mRNA levels indicated biochemical recurrence (p = 0.0183) and lower PMEPA1-b expression associated with metastasis (p = 0.0173). Further, lower PMEPA1-b and a higher ratio of PMEPA1-a vs. -b were correlated to higher Gleason scores and lower progression free survival rate (p < 0.01). TGF-β-responsive PMEPA1-a promoted PCa cell growth, and androgen-responsive PMEPA1-b inhibited cancer cell proliferation. PMEPA1 isoforms -a and -b were shown to be promising candidate biomarkers indicating PCa aggressiveness including earlier biochemical relapse and lower disease specific life expectancy via interrupting androgen/TGF-β signaling.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
LiPan Peng ◽  
ZeZhong Chen ◽  
GuangChuan Wang ◽  
ShuBo Tian ◽  
Shuai Kong ◽  
...  

Abstract Background Long noncoding RNAs (LncRNAs) have been reported to critically regulate gastric cancer (GC). Recently, it was reported that LBX2 antisense RNA 1 (LBX2-AS1) is abnormally expressed in GC. However, the role of LBX2-AS1 in the malignancy of GC is worth further discussion. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the LBX2-AS1, miR-4766-5p and C-X-C motif chemokine (CXCL5) expression in GC tissues and cells. Dual-luciferase reporter assay was applied to examine the target relationship between LBX2-AS1 and miR-4766-5p or miR-4766-5p and CXCL5. Cell counting kit-8 (CCK-8) and Transwell assays were used to detect cell proliferation, migration and invasion rates. The protein expression of CXCL5 was confirmed using western blot. The RNA pull down experiment was used to verify the specificity of LBX2-AS1 and miR-4766-5p on BGC-823 and SGC-7901 cells. Results LBX2-AS1 was up-regulated in GC tissues and cells, and its knockdown suppressed proliferation, migration and invasion of GC cells. While, overexpression of LBX2-AS1 increased proliferation and increased CXCL5 mRNA level. CXCL5 improved cell proliferation, migration and invasion of GC cells. LBX2-AS1 could bind to miR-4766-5p to regulate CXCL5 expression. Overexpression of CXCL5 overturned those effects of miR-4766-5p in GC cells. RNA Pull down shown that BGC-823 and SGC-7901 cells, miR-4766-5p specifically binds to LBX2-AS1. Conclusions In short, this study demonstrated that LBX2-AS1 promoted proliferation, migration and invasion through up-regulation CXCL5 mediated by miR-4766-5p in GC. The LBX2-AS1/miR-4766-5p/CXCL5 regulatory axis provides a theoretical basis for the research on lncRNA-directed therapeutics in GC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hanshuo Zhu ◽  
Zheng Chen ◽  
Lin Shen ◽  
Tianchi Tang ◽  
Min Yang ◽  
...  

Background: Glioblastoma (GBM) represents the most aggressive glioma with high invasive potential. Recent studies proved the involvement of epithelial-mesenchymal transition (EMT) process in increasing the malignancy and invasiveness of GBM. LncRNAs have been verified to play pivotal roles in human disease including GBM. However, the molecular mechanisms of lncRNA-mediated EMT in GBM remain largely unknown. LINC-PINT, a LncRNA which has never been studied in GBM before, was predicted to be negatively associated with EMT in GBM. This study aimed to explore the biological function and the EMT relevance of LINC-PINT in GBM and further explore the molecular mechanism.Methods: The bioinformatic prediction data of LINC-PINT in GBM was derived from The Cancer Genome Atlas (TCGA) database by R software and GEPIA website. qRT-PCR assay was performed to detect the expression level of LINC-PINT in GBM cell lines. Cell counting kit-8 (CCK8), clone formation, transwell, and wound healing assays were performed to determine the biological function of LINC-PINT in vivo. Tumor xenograft experiment and tumor peritoneal metastasis experiments were performed to verify the in vivo function. Western blot and immunofluorescence staining assays were carried out to detect the relevance of LINC-PINT with EMT and Wnt/β-catenin signaling. Rescue assays were performed to check the regulation mechanism of LINC-PINT/Wnt signaling/EMT axis in GBM.Results: LINC-PINT was downregulated in GBM cell lines. LINC-PINT suppressed cell progression, invasion, and EMT in GBM. LINC-PINT blocked Wnt/β-catenin signaling in GBM.Conclusion: LINC-PINT suppressed cell proliferation, invasion, and EMT by blocking Wnt/β-catenin signaling in GBM.


2020 ◽  
Vol 34 ◽  
pp. 205873842090904 ◽  
Author(s):  
Xiuming Liu ◽  
Jianchang Li ◽  
Xiaofeng Li

As one of leading causes of blindness, diabetic retinopathy (DR) is a progressive microvascular complication of diabetes mellitus (DM). Despite significant efforts have been devoted to investigate DR over the years, the molecular mechanisms still remained unclear. Emerging evidences demonstrated that microRNAs (miRNAs) were tightly associated with pathophysiological development of DR. Hence, this study was aimed to illustrate the role and molecular mechanisms of miR-412-5p in progression of DR. Streptozotocin (STZ) treatment in rats and human retinal endothelial cell (HREC) models were used to simulate DR conditions in vivo and in vitro. Hematoxylin-eosin (HE) staining was used to demonstrate the morphology of retinal tissues of rats. Qualitative real-time polymerase chain reaction (qRT-PCR) detected miR-142-5p and vascular endothelial growth factor (VEGF) expression levels. Cell counting kit-8 (CCK8) assay and immunofluorescence (IF) measured the cell proliferation rates. Western blot tested the expression status of IGF1/IGF1R-mediated signaling pathway. Dual-luciferase reporter assays demonstrated the molecular mechanism of miR-142-5p. miR-142-5p level was down-regulated in retinal tissues of DR rats and high glucose (HG)-treated HRECs. Insulin-like growth factor 1 (IGF1) was identified as a direct target of miR-142-5p. The reduced miR-142-5p level enhanced HRECs proliferation via activating IGF/IGF1R-mediated signaling pathway including p-PI3K, p-ERK, p-AKT, and VEGF activation, ultimately giving rise to cell proliferation. Either miR-142-5p overexpression or IGF1 knockdown alleviated the pathological effects on retinal tissues in DR rats. Collectively, miR-142-5p participated in DR development by targeting IGF1/p-IGF1R signaling pathway and VEGF generation. This miR-142-5p/IGF1/VEGF axis provided a novel therapeutic target for DR clinical treatment.


2020 ◽  
Author(s):  
Qiliang Cai ◽  
Jiancheng Pan ◽  
Enli Liang ◽  
Dingrong Zhang ◽  
Cheng Fang ◽  
...  

Abstract Background: Prostate cancer (PCa) is one of the most common malignancies in men. Circular RNAs (circRNAs) are known to be the important regulators in cancer progression. However, the role of circRNAs in PCa is yet to be investigated. Therefore, this study focuses on investigating the effect and the underlying molecular mechanisms of hsa_circ_0001686 (circ_0001686) in PCa. Methods: Sample tissues were collected from the PCa patients to carry out the microarray expression profile of the human circRNAs. In addition, the expression levels of circ_0001686, has_miR-411-5p (miR-411-5p), SMAD3, and TGFBR2 were also detected by qRT-RCR. Next, transfection experiments were employed to measure the effect of circ_0001686 on cell proliferation, migration, and invasion in the PCa cell lines (CWR22RV1and LNCaP). These effects were analyzed using MTT, colony formation, transwell, and scratch wound assays, respectively. The si-circ_0001686 was used as a negative control. Starbase and TargetScan databases were used to predict the putative binding sites among circ_0001686, miR-411-5p, and SMAD3/TGFBR2. The dual-luciferase reporter assays were performed to verify these interactions. Furthermore, the levels of SMAD3 and TGFBR2 in CWR22RV1 and LNCaP cells were measured by western blot. Finally, in vivo experiments in the nude mouse model were carried out to strengthen the in vitro findings. Results: The expression of circ_0001686 was markedly up-regulated while the expression of miR-411-5p was down-regulated in PCa cells. Moreover, circ_0001686 promoted cell proliferation, migration, and invasion. Molecular mechanism exploration revealed that circ_0001686 acts as a sponge of miR-411-5p which affects the downstream target gene SMAD3, and TGFBR2. Both the in vitro and in vivo studies verified that miR-411-5p inhibits cancer growth and metastasis in PCa.Conclusions: The circ_0001686 sequesters miR-411-5p to increase the expression of SMAD3/TGFBR2 which consequently promotes the proliferation, invasion, and migration in PCa cells.


2021 ◽  
Author(s):  
jianxin han ◽  
Ning Tao ◽  
Zhenlei Zhao ◽  
Yanpei Gu ◽  
Fan Xue ◽  
...  

Abstract Background: A novel pyrrolo indole alkaloids, named Robustanoids A, was isolated from Coffea canephora beans, and it inhibits proliferation of prostate cancer (PCa) cells. However, the molecular mechanism linking Robustanoids A to the tumorigenesis of PCa is not yet clear. Methods: We investigated the expression of lncRNAs in PCa cells with Robustanoids A and control group by microarray analysis. The expression level of TCONS_00027385 in PCa tissues and cell lines was detected by qRT-PCR. Additionally, we conducted functional experiments to investigate the biological effects of TCONS_00027385 on the development of PCa both in vitro and in vivo. Furthermore, bioinformatic analysis, luciferase reporter experiment, RIP assay, pulldown assay, and protein chip were performed to investigate the oncogenic molecular mechanisms of TCONS_00027385.Results: In our current study, we focused on TCONS_00027385, which was up-regulated in PCa tissues and cell lines. The high expression of TCONS_00027385 was related to the progression of PCa. Function assays revealed that silencing TCONS_00027385 inhibited PCa cell proliferation and induced apoptosis, while over-expression of TCONS_00027385 remarkably played an opposite role. A deeper investigation showed that TCONS_00027385 acted as a sponge for hsa-miR-874-5p in PCa, and ASCC2 was a target of miR-874-5p in the downstream. Moreover, a positive association between TCONS_00027385 with ASCC2 and a negative relationship between miR-874-5p and TCONS_00027385 (or ASCC2) were also founded. According to the rescue assay, inhibiting ASCC2 could partially suppress the oncogenic effect on cell proliferation and apoptosis in PCa caused by the overexpression of TCONS_00027385.Conclusion: TCONS_00027385 acted as a competing endogenous RNA (ceRNA) for miR-874-5p to regulate the expression of ASCC2. TCONS_00027385 regulated the miR-874-5p/ASCC2 axis to promote PCa progression.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jipeng Lu ◽  
Zhongxiong Wu ◽  
Ying Xiong

Abstract Background Osteoarthritis (OA) is a joint disease characterized via destruction of cartilage. Chondrocyte damage is associated with cartilage destruction during OA. Long noncoding RNAs (lncRNAs) are implicated in the regulation of chondrocyte damage in OA progression. This study aims to investigate the role and underlying mechanism of lncRNA homeobox antisense intergenic RNA (HOTAIR) in OA chondrocyte injury. Methods Twenty-three OA patients and healthy controls without OA were recruited. Chondrocytes were isolated from OA cartilage tissues. HOTAIR, microRNA-107 (miR-107) and C-X-C motif chemokine ligand 12 (CXCL12) levels were measured by quantitative real-time polymerase chain reaction and western blot. Cell proliferation, apoptosis and extracellular matrix (ECM) degradation were measured using cell counting kit-8, flow cytometry and western blot. The target interaction was explored by bioinformatics, luciferase reporter and RNA immunoprecipitation assays. Results HOTAIR expression was enhanced, and miR-107 level was reduced in OA cartilage samples. HOTAIR overexpression inhibited cell proliferation, but induced cell apoptosis and ECM degradation in chondrocytes. HOTAIR knockdown caused an opposite effect. MiR-107 was sponged and inhibited via HOTAIR, and knockdown of miR-107 mitigated the effect of HOTAIR silence on chondrocyte injury. CXCL12 was targeted by miR-107. CXCL12 overexpression attenuated the roles of miR-107 overexpression or HOTAIR knockdown in the proliferation, apoptosis and ECM degradation. CXCL12 expression was decreased by HOTAIR silence, and restored by knockdown of miR-107. Conclusion HOTAIR knockdown promoted chondrocyte proliferation, but inhibited cell apoptosis and ECM degradation in OA chondrocytes by regulating the miR-107/CXCL12 axis.


Sign in / Sign up

Export Citation Format

Share Document