Copper Ions Ameliorated Thermal Burn-Induced Damage in ex vivo Human Skin Organ Culture

2021 ◽  
pp. 1-11
Author(s):  
Navit Ogen-Shtern ◽  
Katerina Chumin ◽  
Eldad Silberstein ◽  
Gadi Borkow

<b><i>Introduction:</i></b> The zone of stasis is formed around the coagulation zone following skin burning and is characterized by its unique potential for salvation. The cells in this zone may die or survive depending on the severity of the burn and therefore are target for the local treatments of burns. Their low survival rate is consistent with decreased tissue perfusion, hypotension, infection, and/or edema, resulting in a significant increase in the wound size following burning. Copper is an essential trace mineral needed for the normal function of almost all body tissues, including the skin. <b><i>Objective:</i></b> The aim of the work was to study the effect copper ions have on skin burn pathophysiology. <b><i>Methods:</i></b> Skin obtained from healthy patients undergoing abdominoplasty surgery was cut into 8 × 8 mm squares, and round 0.8-mm diameter burn wounds were inflicted on the skin explants. The burned and control intact skin samples were cultured up to 27 days after wounding. Immediately following injury and then again every 48 h, saline only or containing 0.02 or 1 µM copper ions was added onto the skin explant burn wounds. <b><i>Results:</i></b> We found that exposing the wounded sites immediately after burn infliction to 0.02 or 1 µM copper ions reduced the deterioration of the zone of stasis and the increase in wound size. The presence of the copper ions prevented the dramatic increase of pro-inflammatory cytokines (interleukin (IL)-6 and IL-8) and transforming growth factor beta-1 that followed skin burning. We also detected re-epithelialization of the skin tissue and a greater amount of collagen fibers upon copper treatment. <b><i>Conclusion:</i></b> The deterioration of the zone of stasis and the increase in wound size following burning may be prevented or reduced by using copper ion-based therapeutic interventions.

2018 ◽  
Vol 19 (12) ◽  
pp. 4124 ◽  
Author(s):  
Antonella Raffo-Romero ◽  
Tanina Arab ◽  
Issa Al-Amri ◽  
Francoise Le Marrec-Croq ◽  
Christelle Van Camp ◽  
...  

In healthy or pathological brains, the neuroinflammatory state is supported by a strong communication involving microglia and neurons. Recent studies indicate that extracellular vesicles (EVs), including exosomes and microvesicles, play a key role in the physiological interactions between cells allowing central nervous system (CNS) development and/or integrity. The present report used medicinal leech CNS to investigate microglia/neuron crosstalk from ex vivo approaches as well as primary cultures. The results demonstrated a large production of exosomes from microglia. Their incubation to primary neuronal cultures showed a strong interaction with neurites. In addition, neurite outgrowth assays demonstrated microglia exosomes to exhibit significant neurotrophic activities using at least a Transforming Growth Factor beta (TGF-β) family member, called nGDF (nervous Growth/Differentiation Factor). Of interest, the results also showed an EV-mediated dialog between leech microglia and rat cells highlighting this communication to be more a matter of molecules than of species. Taken together, the present report brings a new insight into the microglia/neuron crosstalk in CNS and would help deciphering the molecular evolution of such a cell communication in brain.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Francesco Dituri ◽  
Rosanna Scialpi ◽  
Tannin A. Schmidt ◽  
Martina Frusciante ◽  
Serena Mancarella ◽  
...  

AbstractSorafenib and regorafenib administration is among the preferential approaches to treat hepatocellular carcinoma (HCC), but does not provide satisfactory benefits. Intensive crosstalk occurring between cancer cells and other multiple non-cancerous cell subsets present in the surrounding microenvironment is assumed to affect tumor progression. This interplay is mediated by a number of soluble and structural extracellular matrix (ECM) proteins enriching the stromal milieu. Here we assess the HCC tumor expression of the ECM protein proteoglycan 4 (PRG4) and its potential pharmacologic activity either alone, or in combination with sorafenib and regorafenib. PRG4 mRNA levels resulted strongly correlated with increased survival rate of HCC patients (p = 0.000) in a prospective study involving 78 HCC subjects. We next showed that transforming growth factor beta stimulates PRG4 expression and secretion by primary human HCC cancer-associated fibroblasts, non-invasive HCC cell lines, and ex vivo specimens. By functional tests we found that recombinant human PRG4 (rhPRG4) impairs HCC cell migration. More importantly, the treatment of HCC cells expressing CD44 (the main PRG4 receptor) with rhPRG4 dramatically enhances the growth-limiting capacity of sorafenib and regorafenib, whereas not significantly affecting cell proliferation per se. Conversely, rhPRG4 only poorly potentiates drug effectiveness on low CD44-expressing or stably CD44-silenced HCC cells. Overall, these data suggest that the physiologically-produced compound PRG4 may function as a novel tumor-suppressive agent by strengthening sorafenib and regorafenib effects in the treatment of HCC.


Author(s):  
Atefeh Soltani ◽  
Saeid Abroun ◽  
Mojtaba Rezazadeh Valojerdi ◽  
Bahareh Vahidianfar ◽  
Elahe Sadat Hosseini

Background and Aims: Bone marrow-derived mesenchymal stem cells (BM-MSCs) are a well-known source of multipotent adult stem cells. Despite using different methodologies of MSCs preparing for clinical applications, the top safest procedure to manipulate these cells, has not yet been determined. Recently, ex-vivo expansion of MSCs for their subsequent implantation, using some biological product, is suggested instead of fetal bovine serum (FBS). Previous studies have shown the effect of follicular fluid (FF) (a dynamic fluid in ovarian follicle) as an additive component in cell culture. Hence, this study aimed to decipher its role on the human BM-MSC proliferation.Materials and Methods: In this study, BM-MSCs at 3rd passage were cultivated in the presence of 20% FF (group I), 10% FF+ FBS 10% (group II) and FBS 20% as control group. The capacity of proliferation as calculating population doubling times and gene expression levels of stem cell factor, stromal cell-derived factor 1, and transforming growth factor beta were analyzed in osteogeneic media to examine the impacts of FF on osteogenesis of MSCs.Results: Our results corroborated an up-regulatory effect of FF on the proliferation of BM-MSCs by shorter population doubling times in the group II of treated cells and an increase in gene expression level of osteocalcin and transforming growth factor beta in the presence of higher concentrations of FF in cell culture  FF 20% and 10%, respectively.Conclusions: FF is a potent mitogen for cell proliferation. FF may be an efficient substitution of FBS in ex-vivo cell culture, eliminating zoonotic infections and immunological reactions.


2022 ◽  
Author(s):  
Farida Ahangari ◽  
Christine Becker ◽  
Daniel G Foster ◽  
Maurizio Chioccioli ◽  
Meghan Nelson ◽  
...  

Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two FDA approved anti-fibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Using an in-silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor, originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. We investigated the anti-fibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: (i) in vitro in normal human lung fibroblasts (NHLFs); (ii) in vivo in bleomycin and recombinant adenovirus transforming growth factor-beta (Ad-TGF-β) murine models of pulmonary fibrosis; and (iii) ex vivo in precision cut lung slices from these mouse models. In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256237
Author(s):  
Youngwoo Choi ◽  
Soyoon Sim ◽  
Dong-Hyun Lee ◽  
Hee-Ra Lee ◽  
Ga-Young Ban ◽  
...  

Cysteinyl leukotriene (cysLT) overproduction and eosinophil activation are hallmarks of aspirin-exacerbated respiratory disease (AERD). However, pathogenic mechanisms of AERD remain to be clarified. Here, we aimed to find the significance of transforming growth factor beta 1 (TGF-β1) in association with cysteinyl leukotriene E4 (LTE4) production, leading to eosinophil degranulation. To evaluate levels of serum TGF-β1, first cohort enrolled AERD (n = 336), ATA (n = 442) patients and healthy control subjects (HCs, n = 253). In addition, second cohort recruited AERD (n = 34) and ATA (n = 25) patients to investigate a relation between levels of serum TGF-β1 and urinary LTE4. The function of TGF-β1 in LTE4 production was further demonstrated by ex vivo (human peripheral eosinophils) or in vivo (BALB/c mice) experiment. As a result, the levels of serum TGF-β1 were significantly higher in AERD patients than in ATA patients or HCs (P = .001; respectively). Moreover, levels of serum TGF-β1 and urinary LTE4 had a positive correlation (r = 0.273, P = .037). In the presence of TGF-β1, leukotriene C4 synthase (LTC4S) expression was enhanced in peripheral eosinophils to produce LTE4, which sequentially induced eosinophil degranulation via the p38 pathway. When mice were treated with TGF-β1, significantly induced eosinophilia with increased LTE4 production in the lung tissues were noted. These findings suggest that higher levels of TGF-β1 in AERD patients may contribute to LTE4 production via enhancing LTC4S expression which induces eosinophil degranulation, accelerating airway inflammation.


2021 ◽  
Vol 22 (15) ◽  
pp. 7970
Author(s):  
Maaike Suuring ◽  
Aurélie Moreau

Myeloid regulatory cell-based therapy has been shown to be a promising cell-based medicinal approach in organ transplantation and for the treatment of autoimmune diseases, such as type 1 diabetes, rheumatoid arthritis, Crohn’s disease and multiple sclerosis. Dendritic cells (DCs) are the most efficient antigen-presenting cells and can naturally acquire tolerogenic properties through a variety of differentiation signals and stimuli. Several subtypes of DCs have been generated using additional agents, including vitamin D3, rapamycin and dexamethasone, or immunosuppressive cytokines, such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β). These cells have been extensively studied in animals and humans to develop clinical-grade tolerogenic (tol)DCs. Regulatory macrophages (Mregs) are another type of protective myeloid cell that provide a tolerogenic environment, and have mainly been studied within the context of research on organ transplantation. This review aims to thoroughly describe the ex vivo generation of tolDCs and Mregs, their mechanism of action, as well as their therapeutic application and assessment in human clinical trials.


2005 ◽  
Vol 45 (3) ◽  
pp. 205-210 ◽  
Author(s):  
Neil E I Langlois ◽  
Sarah Tarran ◽  
Peter Dziewulski

Thirty-three punch biopsy sets of burn wound edge and adjacent unburnt skin from burn wounds aged six hours to 23 days were obtained from 18 patients. Immunohistochemical staining was performed for transforming growth factor beta receptor, epidermal growth factor receptor and MIB-1 (which stains the cell cycle associated antigen ki-67) in addition to integrins alpha V, 5 and 3 to assess for temporal patterns that might assist in the ageing of burn wounds. There was an early (12 hr-4 day) rise in integrin alpha V expression, an increasing expression of transforming growth factor beta receptor from 12 hours onwards, and increased expression of MIB-1 commencing at 2 days. In biopsy samples from the edge of the burn there was a trend for an early (6 hr-4 day) rise in epidermal growth factor receptor expression. There were no discernable changes in integrin alpha 5 or 3. The striking feature was that biopsy samples from the adjacent, unburnt skin showed similar temporal staining patterns. A further study would be required to determine if the effect was generalised or local, but the observation of changes in unburnt tissue implies that careful consideration must be given to selecting control tissue.


Sign in / Sign up

Export Citation Format

Share Document