scholarly journals The Lamprey Forebrain – Evolutionary Implications

2021 ◽  
pp. 1-16
Author(s):  
Shreyas M. Suryanarayana ◽  
Juan Pérez-Fernández ◽  
Brita Robertson ◽  
Sten Grillner

The forebrain plays a critical role in a broad range of neural processes encompassing sensory integration and initiation/selection of behaviour. The forebrain functions through an interaction between different cortical areas, the thalamus, the basal ganglia with the dopamine system, and the habenulae. The ambition here is to compare the mammalian forebrain with that of the lamprey representing the oldest now living group of vertebrates, by a review of earlier studies. We show that the lamprey dorsal pallium has a motor, a somatosensory, and a visual area with retinotopic representation. The lamprey pallium was previously thought to be largely olfactory. There is also a detailed similarity between the lamprey and mammals with regard to other forebrain structures like the basal ganglia in which the general organisation, connectivity, transmitters and their receptors, neuropeptides, and expression of ion channels are virtually identical. These initially unexpected results allow for the possibility that many aspects of the basic design of the vertebrate forebrain had evolved before the lamprey diverged from the evolutionary line leading to mammals. Based on a detailed comparison between the mammalian forebrain and that of the lamprey and with due consideration of data from other vertebrate groups, we propose a compelling account of a pan-vertebrate schema for basic forebrain structures, suggesting a common ancestry of over half a billion years of vertebrate evolution.

2020 ◽  
pp. 468-496
Author(s):  
Edmund T. Rolls

The basal ganglia include the striatum (caudate, putamen, and ventral striatum) which receive from all cortical areas, and which project via the globus pallidus and substantia nigra back to the neocortex. The basal ganglia are implicated in stimulus-response habit learning, which may be provided by a reinforcement learning signal received by dopamine neurons responding to reward prediction error. The dopamine neurons may receive reward-related information from the orbitofrontal cortex, via the ventral striatum and habenula. The network mechanisms in the basal ganglia implement selection of a single output for behaviour, which is highly adaptive, by mutual direct inhibition between neurons.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cody L. Call ◽  
Dwight E. Bergles

ABSTRACTAxons in the cerebral cortex show a broad range of myelin coverage. Oligodendrocytes establish this pattern by selecting a cohort of axons for myelination; however, the distribution of myelin on distinct neurons and extent of internode replacement after demyelination remain to be defined. Here we show that myelination patterns of seven distinct neuron subtypes in somatosensory cortex are influenced by both axon diameter and neuronal identity. Preference for myelination of parvalbumin interneurons was preserved between cortical areas with varying myelin density, suggesting that regional differences in myelin abundance arises through local control of oligodendrogenesis. By imaging loss and regeneration of myelin sheaths in vivo we show that myelin distribution on individual axons was altered but overall myelin content on distinct neuron subtypes was restored. Our findings suggest that local changes in myelination are tolerated, allowing regenerated oligodendrocytes to restore myelin content on distinct neurons through opportunistic selection of axons.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 163
Author(s):  
Yaru Li ◽  
Yulai Zhang ◽  
Yongping Cai

The selection of the hyper-parameters plays a critical role in the task of prediction based on the recurrent neural networks (RNN). Traditionally, the hyper-parameters of the machine learning models are selected by simulations as well as human experiences. In recent years, multiple algorithms based on Bayesian optimization (BO) are developed to determine the optimal values of the hyper-parameters. In most of these methods, gradients are required to be calculated. In this work, the particle swarm optimization (PSO) is used under the BO framework to develop a new method for hyper-parameter optimization. The proposed algorithm (BO-PSO) is free of gradient calculation and the particles can be optimized in parallel naturally. So the computational complexity can be effectively reduced which means better hyper-parameters can be obtained under the same amount of calculation. Experiments are done on real world power load data,where the proposed method outperforms the existing state-of-the-art algorithms,BO with limit-BFGS-bound (BO-L-BFGS-B) and BO with truncated-newton (BO-TNC),in terms of the prediction accuracy. The errors of the prediction result in different models show that BO-PSO is an effective hyper-parameter optimization method.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 108
Author(s):  
Michael R. Kilbourn

The applications of positron emission tomography (PET) imaging to study brain biochemistry, and in particular the aspects of dopamine neurotransmission, have grown significantly over the 40 years since the first successful in vivo imaging studies in humans. In vivo PET imaging of dopaminergic functions of the central nervous system (CNS) including dopamine synthesis, vesicular storage, synaptic release and receptor binding, and reuptake processes, are now routinely used for studies in neurology, psychiatry, drug abuse and addiction, and drug development. Underlying these advances in PET imaging has been the development of the unique radiotracers labeled with positron-emitting radionuclides such as carbon-11 and fluorine-18. This review focuses on a selection of the more accepted and utilized PET radiotracers currently available, with a look at their past, present and future.


2016 ◽  
Vol 283 (1838) ◽  
pp. 20161032 ◽  
Author(s):  
Gildas Merceron ◽  
Anusha Ramdarshan ◽  
Cécile Blondel ◽  
Jean-Renaud Boisserie ◽  
Noël Brunetiere ◽  
...  

Both dust and silica phytoliths have been shown to contribute to reducing tooth volume during chewing. However, the way and the extent to which they individually contribute to tooth wear in natural conditions is unknown. There is still debate as to whether dental microwear represents a dietary or an environmental signal, with far-reaching implications on evolutionary mechanisms that promote dental phenotypes, such as molar hypsodonty in ruminants, molar lengthening in suids or enamel thickening in human ancestors. By combining controlled-food trials simulating natural conditions and dental microwear textural analysis on sheep, we show that the presence of dust on food items does not overwhelm the dietary signal. Our dataset explores variations in dental microwear textures between ewes fed on dust-free and dust-laden grass or browse fodders. Browsing diets with a dust supplement simulating Harmattan windswept environments contain more silica than dust-free grazing diets. Yet browsers given a dust supplement differ from dust-free grazers. Regardless of the presence or the absence of dust, sheep with different diets yield significantly different dental microwear textures. Dust appears a less significant determinant of dental microwear signatures than the intrinsic properties of ingested foods, implying that diet plays a critical role in driving the natural selection of dental innovations.


Author(s):  
Alice Guerra ◽  
Barbara Luppi ◽  
Francesco Parisi

AbstractIn litigation models, the parties’ probability to succeed in a lawsuit hinge upon the merits of the parties’ claims and their litigation efforts. In this paper we extend this framework to consider an important procedural aspect of the legal system: the standard of proof. We recast the conventional litigation model to consider how alternative standards of proof affect litigation choices. We analyze the interrelation between different standards of proof, the effectiveness of the parties’ efforts, and the merits of the case. We study how these factors jointly affect the parties’ litigation expenditures, the selection of cases brought to the courts, pretrial bargain solutions and preemptive strategies. Our results show that standards of proof are not only instrumental to balancing the competing goals of access to justice and judicial truth-finding, but they also play a critical role in affecting parties’ litigation investments and settlement choices, and in sorting the mix of cases that will actually be filed and defended in courts. The understanding of the sorting effect of standards of proof sheds light on their role as a policy instrument in civil litigation.


2007 ◽  
Vol 97 (3) ◽  
pp. 2107-2120 ◽  
Author(s):  
Eugene Tunik ◽  
Paul J. Schmitt ◽  
Scott T. Grafton

In the natural world, we experience and adapt to multiple extrinsic perturbations. This poses a challenge to neural circuits in discriminating between different context-appropriate responses. Using event-related fMRI, we characterized the neural dynamics involved in this process by randomly delivering a position- or velocity-dependent torque perturbation to subjects’ arms during a target-capture task. Each perturbation was color-cued during movement preparation to provide contextual information. Although trajectories differed between perturbations, subjects significantly reduced error under both conditions. This was paralleled by reduced BOLD signal in the right dentate nucleus, the left sensorimotor cortex, and the left intraparietal sulcus. Trials included “NoGo” conditions to dissociate activity related to preparation from execution and adaptation. Subsequent analysis identified perturbation-specific neural processes underlying preparation (“NoGo”) and adaptation (“Go”) early and late into learning. Between-perturbation comparisons of BOLD magnitude revealed negligible differences for both preparation and adaptation trials. However, a network-level analysis of BOLD coherence revealed that by late learning, response preparation (“NoGo”) was attributed to a relative focusing of coherence within cortical and basal ganglia networks in both perturbation conditions, demonstrating a common network interaction for establishing arbitrary visuomotor associations. Conversely, late-learning adaptation (“Go”) was attributed to a focusing of BOLD coherence between a cortical–basal ganglia network in the viscous condition and between a cortical–cerebellar network in the positional condition. Our findings demonstrate that trial-to-trial acquisition of two distinct adaptive responses is attributed not to anatomically segregated regions, but to differential functional interactions within common sensorimotor circuits.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Mariia Novikova ◽  
Lucas J. Adams ◽  
Juan Fontana ◽  
Anna T. Gres ◽  
Muthukumar Balasubramaniam ◽  
...  

ABSTRACTLate in the HIV-1 replication cycle, the viral structural protein Gag is targeted to virus assembly sites at the plasma membrane of infected cells. The capsid (CA) domain of Gag plays a critical role in the formation of the hexameric Gag lattice in the immature virion, and, during particle release, CA is cleaved from the Gag precursor by the viral protease and forms the conical core of the mature virion. A highly conserved Pro-Pro-Ile-Pro (PPIP) motif (CA residues 122 to 125) [PPIP(122–125)] in a loop connecting CA helices 6 and 7 resides at a 3-fold axis formed by neighboring hexamers in the immature Gag lattice. In this study, we characterized the role of this PPIP(122–125) loop in HIV-1 assembly and maturation. While mutations P123A and P125A were relatively well tolerated, mutation of P122 and I124 significantly impaired virus release, caused Gag processing defects, and abolished infectivity. X-ray crystallography indicated that the P122A and I124A mutations induce subtle changes in the structure of the mature CA lattice which were permissive forin vitroassembly of CA tubes. Transmission electron microscopy and cryo-electron tomography demonstrated that the P122A and I124A mutations induce severe structural defects in the immature Gag lattice and abrogate conical core formation. Propagation of the P122A and I124A mutants in T-cell lines led to the selection of compensatory mutations within CA. Our findings demonstrate that the CA PPIP(122–125) loop comprises a structural element critical for the formation of the immature Gag lattice.IMPORTANCECapsid (CA) plays multiple roles in the HIV-1 replication cycle. CA-CA domain interactions are responsible for multimerization of the Gag polyprotein at virus assembly sites, and in the mature virion, CA monomers assemble into a conical core that encapsidates the viral RNA genome. Multiple CA regions that contribute to the assembly and release of HIV-1 particles have been mapped and investigated. Here, we identified and characterized a Pro-rich loop in CA that is important for the formation of the immature Gag lattice. Changes in this region disrupt viral production and abrogate the formation of infectious, mature virions. Propagation of the mutants in culture led to the selection of second-site compensatory mutations within CA. These results expand our knowledge of the assembly and maturation steps in the viral replication cycle and may be relevant for development of antiviral drugs targeting CA.


2021 ◽  
Author(s):  
Shinya Ito ◽  
Yufei Si ◽  
Alan M. Litke ◽  
David A. Feldheim

AbstractSensory information from different modalities is processed in parallel, and then integrated in associative brain areas to improve object identification and the interpretation of sensory experiences. The Superior Colliculus (SC) is a midbrain structure that plays a critical role in integrating visual, auditory, and somatosensory input to assess saliency and promote action. Although the response properties of the individual SC neurons to visuoauditory stimuli have been characterized, little is known about the spatial and temporal dynamics of the integration at the population level. Here we recorded the response properties of SC neurons to spatially restricted visual and auditory stimuli using large-scale electrophysiology. We then created a general, population-level model that explains the spatial, temporal, and intensity requirements of stimuli needed for sensory integration. We found that the mouse SC contains topographically organized visual and auditory neurons that exhibit nonlinear multisensory integration. We show that nonlinear integration depends on properties of auditory but not visual stimuli. We also find that a heuristically derived nonlinear modulation function reveals conditions required for sensory integration that are consistent with previously proposed models of sensory integration such as spatial matching and the principle of inverse effectiveness.


Author(s):  
Carmen Lopez ◽  
Mingfeng Cao ◽  
Zhanyi Yao ◽  
Zengyi Shao

Production of industrially relevant compounds in microbial cell factories can employ either genomes or plasmids as an expression platform. Selection of plasmids as pathway carriers is advantageous for rapid demonstration but poses a challenge of stability. Yarrowia lipolytica has attracted great attention in the past decade for the biosynthesis of chemicals related to fatty acids at titers attractive to industry, and many genetic tools have been developed to explore its oleaginous potential. Our recent studies on the autonomously replicating sequences (ARSs) of nonconventional yeasts revealed that the ARSs from Y. lipolytica showcase a unique structure that includes a previously unannotated sequence (spacer) linking the origin of replication (ORI) and the centromeric (CEN) element and plays a critical role in modulating plasmid behavior. Maintaining a native 645-bp spacer yielded a 4.5-fold increase in gene expression and higher plasmid stability compared to a more universally employed minimized ARS. Testing the modularity of the ARS sub-elements indicated that plasmid stability exhibits a pronounced cargo dependency. Instability caused both plasmid loss and intramolecular rearrangements. Altogether, our work clarifies the appropriate application of various ARSs for the scientific community and sheds light on a previously unexplored DNA element as a potential target for engineering Y. lipolytica.


Sign in / Sign up

Export Citation Format

Share Document