scholarly journals Social impact of renewable energy systems: solar energy system in vulnerable community case study

2021 ◽  
Vol 10 (5) ◽  
pp. 2337-2344
Author(s):  
Yeison Alberto Garcés- Gómez ◽  
Vladimir Henao- Céspedes ◽  
Diana Marcela Gómez Sánchez ◽  
Ángel Andrés López Trujillo ◽  
Nicolás Toro García

Photovoltaic lighting systems are unable to reach people with low purchasing power due to high installation costs, so they have traditionally been concentrated in families with high purchasing power and currently do not take into account the social power that this type of system represents. This article analyzes through bibliometric review the effect that lighting can have on human development and how a good lighting system can positively affect a community environment. It is proposed the social design of a photovoltaic lighting system which will be installed in a vulnerable community with resources obtained by the community itself and the whole process of accompaniment achieving a satisfactory impact on the community and achieving integration between the same from community participation. The development of workshops with the children of the community has also been proposed, leading to the training and recognition of alternative energy systems as a strategy of social appropriation.

Author(s):  
Sapna Jain ◽  
M. Afshar Alam ◽  
Niloufer Adil Kazmi

This chapter dissects the effect of online life on each youngster in both the negative and positive bearing of their development utilizing the social impact hypothesis. Reliance of youth via web-based networking media has both negative and beneficial outcomes. This hypothesis portrays social effect concerning social power handle that encroach upon us, pushing us to think or keep thinking about a specific goal. These social powers have been stood out from physical powers that control the transmission of light, solid, gravity, interest, and so forth. The discoveries uncovered that the utilization of internet-based life impacts adolescent conduct when contrasted with positive aspects. This study shows a connection among contradictory and imaginative qualities of online life and displays roads for future investigations by encouraging a superior comprehension of electronic interpersonal organization use. In the chapter, the social effect felt by a person as a component of the quality, instantaneousness, and number of source people is exhibited and examined.


Author(s):  
Pedro Mendoza G. ◽  
Maximiliano Arroyo Ulloa ◽  
Vincenzo Naso

The bioceanic Amazon corridor represents a development opportunity for the Peruvian and Brazilian economy but this economic evolution is linked to the production and use of energy. Energy is a conditioning factor of economic growth and development and the application of conventional (or alternative) energy systems is strongly influenced by both quantitative and qualitative trends in energy consumption. Decentralized production of energy is necessary, and new decentralized energy technologies based on renewable sources could provide additional income opportunities, decreasing environmental risk along Amazon corridor, and providing clean fuel and electricity. It’s necessary that the bioceanic Amazon corridors call for the application of energy systems related to the renewable local resources in coast, mountain and forest. In Peru, firewood is the principal energy source for cooking and heating and this fuel is used in inefficient combustion system that increases the impact on ecosystems. Typical Peruvian biomass source are wood, agricultural residues, agro industrial waste and municipal solid waste. The most obvious it’s the availability of agricultural and agro industrial residues that could be used as a biomass fuel source in modern plant to produce electricity. Today, there is a growing interest for ethanol production from sugar cane, but it couldn’t be applied along bioceanic corridors; therefore it is necessary to integrate other renewable sources.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 495 ◽  
Author(s):  
Kosuke Seki ◽  
Keisuke Takeshita ◽  
Yoshiharu Amano

Optimal design of energy systems ultimately aims to develop a methodology to realize an energy system that utilizes available resources to generate maximum product with minimum components. For this aim, several researches attempt to decide the optimal system configuration as a problem of decomposing each energy system into primitive process elements. Then, they search the optimal combination sequentially from the minimum number of constituent elements. This paper proposes a bottom-up procedure to define and explore configurations by combining elementary processes for energy systems with absorption technology, which is widely applied as a heat driven technology and important for improving system’s energy efficiency and utilizing alternative energy resources. Two examples of application are presented to show the capability of the proposed methodology to find basic configurations that can generate the maximum product. The demonstration shows that the existing absorption systems, which would be calculated based on the experience of designers, could be derived by performing optimization with the synthesis methodology automatically under the simplified/idealized operating conditions. The proposed bottom-up methodology is significant for realizing an optimized absorption system. With this methodology, engineers will be able to predict all possible configurations and identify a simple yet feasible optimal system configuration.


2020 ◽  
Vol 29 (4) ◽  
pp. 923-944 ◽  
Author(s):  
Stanley Blue ◽  
Elizabeth Shove ◽  
Peter Forman

There is broad agreement that the need to decarbonise and make better use of renewable and more intermittent sources of power will require increased flexibility in energy systems. However, organisations involved in the energy sector work with very different interpretations of what this might involve. In describing how the notion of flexibility is reified, commodified, and operationalised in sometimes disparate and sometimes connected ways, we show that matters of time and timing are routinely abstracted from the social practices and forms of provision on which the rhythms of supply and demand depend. We argue that these forms of abstraction have the ironic effect of stabilising interpretations of need and demand, and of limiting rather than enabling the emergence of new practices and patterns of demand alongside, and as part of, a radically decarbonised energy system. One way out of this impasse is to conceptualise flexibility as an emergent outcome of the sequencing and synchronisation of social practices. To do so requires a more integrated and historical account of how supply and demand constitute each other and how both are implicated in the temporal organisation of everyday life. It follows that efforts to promote flexibility in the energy sector need to look beyond systems of provision, price, technology, and demand-side management narrowly defined, and instead focus on the social rhythms and the timing of what people do.


Author(s):  
Robin J. McDaniel

Small Modular Reactor (SMR) technologies have been recently deemed by the DOE as clean energy, a low carbon-dioxide emitting “alternative energy” source. Recent UN Sustainability Goals and Global Climate Talks to reduce the anthropomorphic Carbon-Dioxide atmospheric concentrations signal a renewed interest and need for nuclear power. The objective of this paper is to present an improved approach to the evaluation of “Hybrid Nuclear Energy Systems”. A hybrid energy system is defined as an energy system that utilizes two or more sources of energy to be used in single or multiple applications. Traditional single sourced energy or power systems require the amount of energy creation and the production of usable power to be carefully balanced. With the introduction of multiple energy sources, loads, and energy capacitors, the design, simulation, and operation of such hybrid systems requires a new approach to analysis and control. This paper introduces three examples of “Hybrid Nuclear Energy Systems”, for large scale power, industrial heat, and electricity generation. The system component independence, reliability, availability, and dynamic control aspects, coupled with component operational decisions presents a new way to optimize energy production and availability. Additional novel hybrid hydro-nuclear systems, concentrated solar-nuclear power desalination systems, and nuclear-insitu petroleum extraction systems are compared. The design aspects of such hybrid systems suitable for process heat, electricity generation, and/or desalination applications are discussed. After a multiple-year research study of past hybrid reactor designs and recent system proposals, the following design evaluation approach is the result of analysis of the best concepts discovered. This review of existing literature has summerized that postulated benefits of Hybrid Nuclear Sytems are; reduced greenhouse gas emissions, increased energy conversion efficiency, high reliability of electricity supply and consistent power quality, reduced fossil fuel dependence, less fresh water consumption, conversion of local coal or shale into higher value fuels, while lowering the risks and costs. As these proposed hybrid systems are interdisciplinary in nature, they will require a new multidisciplinary approach to systems evaluation.


Author(s):  
Sergiy Korinnyi ◽  
Mariia Mikhailutsa ◽  
Anastasiia Bondarenko

The article examines a set of issues related to "green energy" in the world, problems and opportunities from the introduction of alternative energy sources for greening the economy, developing sustainable economy and preserving human potential. Analytical works of some Ukrainian authors have been studied, in which the current state, obstacles to the realization and prospects of "green energy" in the world have been determined. The purpose of the article is to refute the allegations about the need to immediately stop the introduction of "green technologies", including the construction of solar stations. There are two opposing views on the need for green energy, which have been being discussed around the world for the past few decades. The most popular evidence from both sides on this issue is given, in particular, that the planet can be saved only through the active use of renewable energy sources, and on the other hand, that "green energy" at the current level of human development will cause even more environmental and economic problems. The arguments most often expressed by opponents of the active introduction of "green energy" are highlighted, namely: the high cost of new technologies compared to existing types of generation; the inability of "green energy" to solve the problem of warming on the planet with reference to scientific research on the amount of CO2 emissions from different types of generation as a major factor in warming; danger to the energy systems of all countries of the world due to the instability of energy production by natural factors. Counter-arguments on these issues are provided and evidence of the ability and necessity to use clean technologies is provided. The problem, on which the opinions of both parties coincide, is highlighted - the reluctance of "green" investors to spend money on storage systems, energy storage and stabilization of energy systems due to their high cost, size, insufficient energy consumption and insufficient duration of work. It is noted that the issue of developing the latest energy storage and stabilization systems and their installation at new and existing RES stations needs to be addressed immediately, but is not an obstacle to the further development of green energy.


2015 ◽  
Vol 733 ◽  
pp. 986-989
Author(s):  
Zhong Ming Zhang ◽  
Hong Xue Wang

Energy is the basic industry of the national economy, the social and economic development. It plays a very important role in the improvement of human living standards. However, in the actual planning process, a lot of the energy system complexity and uncertainty of information exists, the traditional energy model does not reflect this characteristic. Therefore, this short paper will make a brief introduction of the uncertainty of the Energy System allocation model.


2020 ◽  
Vol 12 (7) ◽  
pp. 2745 ◽  
Author(s):  
Osman Taylan ◽  
Rami Alamoudi ◽  
Mohammad Kabli ◽  
Alawi AlJifri ◽  
Fares Ramzi ◽  
...  

Energy systems planning commonly involves the study of supply and demand of power, forecasting the trends of parameters established on economics and technical criteria of models. Numerous measures are needed for the fulfillment of energy system assessment and the investment plans. The higher energy prices which call for diversification of energy systems and managing the resolution of conflicts are the results of high energy demand for growing economies. Due to some challenging problems of fossil fuels, energy production and distribution from alternative sources are getting more attention. This study aimed to reveal the most proper energy systems in Saudi Arabia for investment. Hence, integrated fuzzy AHP (Analytic Hierarchy Process), fuzzy VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) and TOPSIS (Technique for Order Preferences by Similarity to Idle Solution) methodologies were employed to determine the most eligible energy systems for investment. Eight alternative energy systems were assessed against nine criteria—power generation capacity, efficiency, storability, safety, air pollution, being depletable, net present value, enhanced local economic development, and government support. Data were collected using the Delphi method, a team of three decision-makers (DMs) was established in a heterogeneous manner with the addition of nine domain experts to carry out the analysis. The fuzzy AHP approach was used for clarifying the weight of criteria and fuzzy VIKOR and TOPSIS were utilized for ordering the alternative energy systems according to their investment priority. On the other hand, sensitivity analysis was carried out to determine the priority of investment for energy systems and comparison of them using the weight of group utility and fuzzy DEA (Data Envelopment Analysis) approaches. The results and findings suggested that solar photovoltaic (PV) is the paramount renewable energy system for investment, according to both fuzzy VIKOR and fuzzy TOPSIS approaches. In this context our findings were compared with other works comprehensively.


Author(s):  
Seizo Kato ◽  
Tatsuya Shimizu

The fossil fuel depletion and the CO2 warming due to the combustion are becoming serious environmental issues. Therefore, alternative energy systems minimumizing fossil fuels dependence are now required to be developted. Hydrogen is a best candidate for alternative energy sources friendly to the environment, but the essential point is how we produce hydrogen, independently of fossil fuel with a minimum energy input. This work aims first at proposing an alternative hydrogen gasifier from acid water by immersing ionicity metals, and second at applying the gasifier to a hydrogen ultra micro gas turbine electric generator charger system to construct hydrogen self supply energy system. First, D2SO4 as acid aqueous solutions and (Zn+Cu) and Zn plates as ionicity metals electrodes are selected here for H2 gasifier. The hydrogen production rate is experimentally characterized by changing the pH and temperature of the solution and the metal surface area. The gasifier has a good performance of hydrogen production of about 18 l/min at 60°C per unit electrode area under the pH = ∼1.0. This flow rate increases almost linearly to the acid temperature. In addition, the zinc resolved into the acid water, ZnSO4 in the case of D2SO4 for example, is able to be easily recrystalized on the electrode by reasonable electricity input of ∼2.5V. Second, the produced hydrogen is applied to ultra micro turbo electric generator / charger as hydrogen self supply system. This smart system is well applicable to hydrogen electric car, because of an ideal power source having small size, lightweight, low vibration, early start, no NOX and CO2 emissions, very low fuel consumption, long trip, etc. In the experiment a car turbo charger is converted into a compressorturbine system, and a high revolution electricity generator is connected to the turbo system. A combustor is designed for very low hydrogen consumption by ultra lean burning which causes almost no NOX emission due to low temperature < 1000°C. The turbo system is tested, resulting in a high efficiency, in spite of its small size, enough to generate electricity for charging a battery of electric car. By using these two elements, we aim to construct HSSES (Hydrogen Self Supply Energy System) which is found to be attractive especially for small electric cars and home cogenerations.


Sign in / Sign up

Export Citation Format

Share Document