scholarly journals Design of a modified natural egyptian solar house

Author(s):  
Hanaa M. Farghally ◽  
Faten H. Fahmy ◽  
Amal A. Hassan ◽  
Ninet M. Ahmed

The rate of increase in energy consumption and high costs in addition to the depletion of existing resources has a significant impact on our standard of living for next generations. In this case, the priority is to develop alternative cost-effective sources for powering the residential and non-residential buildings. This paper proposes and develops a design of a modified small two-story residential solar house for a medium-sized family located in Cairo, Egypt. This modified solar house meets almost all its energy demands including space heating by using solar air collector with a pebble storage unit in winter and a summer cooling system using wind catcher theory. Hot water is obtained throughout the day by using a steel sheltered water storage tank with a capacity of 1000 liter. Finally, the proposed heating system of the solar house is sized and modeled.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Begmyrat Kulmedov ◽  
Serdar Durdyev

PurposeThe aim of the present study is to assess the selected heating systems (furnace and boiler) commonly used in the dwellings of seven post-USSR (the Union of Soviet Socialist Republics) countries. The systems were assessed in terms of their cost and environmental performance, with natural gas and electricity used as the main source of energy.Design/methodology/approachThe cost-effectiveness and environmental performance of the selected heating systems that have been commonly used in the selected post-USSR countries was assessed. Current energy (natural gas and electricity) prices that are applied in those countries were used.FindingsResults show that the furnace is the cheapest option, while natural gas is the cheapest source of energy, despite its high price in Tajikistan and Kyrgyzstan. Both heating systems could be considered eco-friendly options, although their efficiencies need to be considered at the design stage. Turkmenistan, Uzbekistan and Kazakhstan, which are the top natural gas producers, offer natural gas for the selected heating systems as both cost-effective and eco-friendly options.Practical implicationsA considerable reduction in electricity consumption and less harm to our environment can be achieved through the systems used in residential buildings in the region.Originality/valueThe outcomes of the present study offer value (in terms of cost-effective and eco-friendly options) for the end-users in the region.


A completed study of a solar hot water heating system installed in a school showed an annual average efficiency of 15%, the low efficiency largely caused by the unfavourable pattern of use in schools. Field studies, in 80 existing and 12 new houses, of a simple domestic hot water system have been initiated to ascertain the influence of the occupants on the actual performance of solar collector systems. The development of testing methods of solar collectors and solar water heating systems is being undertaken in close collaboration with the B.S.I. and the E.E.C. Solar space heating is being investigated in two experimental low energy house laboratories, one using conventional solar collectors with interseasonal heat storage and the other a heat pump with an air solar collector. Studies of the cost-effectiveness of solar collector applications to buildings in the U.K. show that they are far less cost-effective than other means of conserving energy in buildings.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 996 ◽  
Author(s):  
Li Huang ◽  
Rongyue Zheng ◽  
Udo Piontek

A solar cooling and heating system incorporated with two air-source heat pumps was installed in Ningbo City, China and has been operating since 2018. It is composed of 40 evacuated tube modules with a total aperture area of 120 m2, a single-stage and LiBr–water-based absorption chiller with a cooling capacity of 35 kW, a cooling tower, a hot water storage tank, a buffer tank, and two air-source heat pumps, each with a rated cooling capacity of 23.8 kW and heating capacity of 33 kW as the auxiliary system. This paper presents the operational results and performance evaluation of the system during the summer cooling and winter heatingperiod, as well as on a typical summer day in 2018. It was found that the collector field yield and cooling energy yield increased by more than 40% when the solar cooling and heating system is incorporated with heat pumps. The annual average collector efficiency was 44% for cooling and 42% for heating, and the average coefficient of performance (COP) of the absorption chiller ranged between 0.68 and 0.76. The annual average solar fraction reached 56.6% for cooling and 62.5% for heating respectively. The yearly electricity savings accounted for 41.1% of the total electricity consumption for building cooling and heating.


2015 ◽  
Vol 787 ◽  
pp. 32-36 ◽  
Author(s):  
V.Boopathi Raja ◽  
V. Shanmugam

Many research studies have been carried out to develop small capacity absorption cooling systems as an alternative to conventional vapour compression refrigeration (VCR) systems with respect to performance and economic aspects. The aim of this work is to design a solar assisted single effect absorption cooling system of 5.25 kW cooling capacity to cool a room having floor area of 15 m2. Based on the design, an experimental setup is constructed and operated by supplying heat to the generator using solar energy. The performance analysis of the cooling system is carried out by measuring the various operational parameters. The minimum cooling temperature of 16°C is observed in the evaporator and maximum COP of 0.9 is obtained when the hot water storage tank reaches 90°C. As per this new design, the operational cost is minimized and the COP obtained is slightly higher when compared to that of earlier similar works.


2017 ◽  
Vol 28 (1) ◽  
pp. 76 ◽  
Author(s):  
G.D. Joubert ◽  
R.T. Dobson

The as-built and tested passive night-sky radiation cooling/heating system considered in this investigation consists of a radiation panel, a cold water storage tank, a hot water storage tank, a room and the interconnecting pipework. The stored cold water can be used to cool a room during the day, particularly in summer. A theoretical time-dependent thermal performance model was also developed and compared with the experimental results and it is shown that the theoretical simulation model captures the experimental system performance to within a reasonable degree of accuracy. A natural circulation experimental set-up was constructed and subsequently used to show that under local (Stellenbosch, South Africa) conditions the typical heat-removal rate from the water in the tank is 55 W/m2 of radiating panel during the night; during the day the water in the hot water-storage tank was heated from 24 °C to 62 °C at a rate of 96 W/m2. The system was also able to cool the room at a rate of 120 W/m3. The results thus confirmed that it is entirely plausible to design an entirely passive system, that is, without the use of any moving mechanical equipment such as pumps and active controls, for both room-cooling and water-heating. It is thus concluded that a passive night-sky radiation cooling/heating system is a viable energy-saving option and that the theoretical simulation, as presented, can be used with confidence as an energy-saving system design and evaluation tool. Keywords: passive cooling and heating, buoyancy-driven fluid flow, theoretical simulation, experimental verification Highlights:Passively driven renewable energy heating and cooling systems are considered.Time-dependent mathematical simulation model is presented.Experimental buoyancy-driven heating and cooling system built and tested.Experimental results demonstrate the applicability of the theoretical simulation model.Saving and evaluation design tool.


2010 ◽  
Vol 56 (3) ◽  
pp. 219-238 ◽  
Author(s):  
W.J. Chmielnicki

Abstract The annual usage of heat for the demand of heating systems in municipal sector has been estimated as about 650PJ. It is mostly addressed for the demand of central heating systems and hot water consumption. The mode of adopted solutions concerning regulation and control, as well as energy management system, essentially influence its consumption. In the case of residential buildings, the costs of energy constitute the greatest share related to the total cost of building maintenance. Providing buildings with modern digital systems for control and regulation of heating installations is a basic condition enabling their rational usage. In currently employed solutions, algorithms PI or PID are usually applied. However, due to the non-linear properties of heating control systems, they do not secure proper quality. The sequences are often unstable and major control deviations occur. The application of neural networks is an alternative solution to those presently employed. They are especially recommended for adaptive control of non-stationary systems. Such cases occur in heating objects since they demonstrate non-linear properties with a great range of variability of parameters; this especially refers to district heating equipped with flux-through heat exchangers. In this paper, a compile model of heating system control aided by neural networks is presented. The results of the investigation clearly prove the usefulness of such solutions, cause the quality of control is much better than that one applied in traditional systems. Presently, works on the implementation of the proposed solutions are under way.


1988 ◽  
Vol 110 (3) ◽  
pp. 172-179 ◽  
Author(s):  
Z. Zhang ◽  
M. Pate ◽  
R. Nelson

An experimental study of a solar-radiant heating system was performed at Iowa State University’s Energy Research House (ERH). The ERH was constructed with copper tubes embedded in the plaster ceilings, thus providing a unqiue radiant heating system. In addition, 24 water-glycol, flat-plate solar collectors were mounted on the south side of the residence. The present study uses the solar collectors to heat a storage tank via a submerged copper tube coil. Hot water from the storage tank is then circulated through a heat exchanger, which heats the water flowing through the radiant ceiling. This paper contains a description of the solar-radiant system and an interpretation of the data that were measured during a series of transient experiments. In addition, the performance of the flat-plate solar collectors and the water storage tank were evaluated. The characteristics of a solar-to-radiant heat exchanger were also investigated. The thermal behavior of the radiant ceiling and the room enclosures were observed, and the heat transfer from the ceiling by radiation and convection was estimated. The overall heating system was also evaluated using the thermal performances of the individual components. The results of this study verify that it is feasible to use a solar system coupled to a low-temperature radiant-panel heating system for space heating. A sample performance evaluation is also presented.


Author(s):  
D’Angelo R. Woods ◽  
James S. Hammonds

For most households space heating and domestic hot water production constitute the largest portion of energy consumption, which for a typical home space and water heating can comprise over 60% of the total energy usage. Therefore significant energy savings can be accomplished by using energy sources and systems for heating more efficiently. An approach discussed in this work uses system controls to better manage available resources and balance user comfort with efficient use of energy systems. In this work the results of a supervisory control approach applied to residential heating system are presented. The control system is characterized by a supervisory unit that controls the subsystems. The subsystems of this analysis include a thermal source and an energy storage unit. Dynamic thermal system control is demonstrated using a real-time, pseudo-hardware-in-the-loop test bench. The results show the potential reduction of energy consumption through advanced control implementation.


2021 ◽  
Vol 14 (1) ◽  
pp. 27-33
Author(s):  
O. D. Samarin

The arrangement for heat supply of residential buildings with indirect connection to external heating systems is considered, providing reliability of heat input and required comfort in case of cold snaps after the official end of the heating season or before its beginning by supplying water from the return main of the heating system downstream the hot water supply heat exchangers. The calculations have been made to determine the amount of the main components of heat balance of a residential building on an example of one of standard projects being currently used in the climatic conditions of Moscow, subject to the structural characteristics of the building and its occupancy level. It is established that the actual heat output of the heating system when using the system of chilled water downstream the hot water supply heat exchangers as a heat source enables to main-tain an indoor temperature required for safe living conditions with the average daily outdoor air temperature above +2°C, the heat gain from solar radiation being moderate. It is proven that, tak-ing into account the thermal stability of the enclosing structures, the daily flow rate fluctuations do not significantly affect the stability of the temperature conditions of residential buildings or the comfort of their indoor microclimate at high outdoor air temperatures. It is noted that, in terms of reliability of heat supply of the main group of residential buildings and ensuring the life safety, the proposed arrangement is not inferior to the standard two-stage arrangement of connection of DHW heat exchangers with restriction of the total consumption of delivery water and with the associated regulation of heat supply for DHW, heating and ventilation. It is shown that the use of this arrangement involves virtually no extra costs, provides hydraulic resistance of the heating system and ensures a system-wide effect in the form of higher electricity generation at thermal consumption when using cogeneration.


Sign in / Sign up

Export Citation Format

Share Document