scholarly journals One input voltage and three output voltage universal biquad filters with orthogonal tune of frequency and bandwidth

Author(s):  
May Phu Pwint Wai ◽  
Amornchai Chaichana ◽  
Winai Jaikla ◽  
Surapong Siripongdee ◽  
Peerawut Suwanjan

This research paper contributes the one input three output voltage mode universal biquad filters with linear and electronic control of the natural frequency (<em>w<sub>0</sub></em>), using two commercially available ICs, LT1228s as active device with two grounded capacitors, five resistors. The presented universal biquad filters can simultaneously provide three voltage-mode filtering functions, low-pass (LP), high-pass (HP) and band-pass (BP) without changing the circuit architecture. Furthermore, the first presented biquad filter provides low impedance at HP, BP voltage output nodes and LP, BP output voltage nodes are low impedance for the second proposed filter which is easy cascade ability with other voltage mode circuits without the employment of buffer circuits. The quality factor (<em>Q</em>) of both proposed filters is orthogonally adjusted from the passband voltage gain and <em>w<sub>0</sub></em>. The proposed filters are simulated and experimented with commercially accessible ICs, LT1228. The simulated and experimental results demonstrate the filtering performances.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
J. K. Pathak ◽  
A. K. Singh ◽  
Raj Senani

Two new configurations for voltage mode universal filters (VMUFs) using only two current differencing buffered amplifiers (CDBAs) are proposed. Both of the new configurations can realize all the five standard types of the filters, namely, low pass (LP), high pass (HP), band pass (BP), band stop (BS), and all pass (AP), from the same topology. In contrast to previously known CDBA-based VMUFs, the new configurations do not need an additional active device for voltage inversion to realize all pass functions. The proposed configurations offer the tunability of the natural angular frequency (ωo), quality factor (Q), or the bandwidth (BW) through separate virtually grounded resistors. Moreover, both circuits have resistive input impedance (which can be made high) and a low output impedance to facilitate easy cascading without additional buffers. PSPICE simulation results, based upon commercially available AD844 ICs to implement the CDBA, are included which confirm the practical workability of the new VMUF configurations.


2005 ◽  
Vol 14 (01) ◽  
pp. 159-164 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
IQBAL A. KHAN

A novel voltage-mode universal filter employing only two current differencing buffered amplifiers (CDBAs) is proposed. The filter uses four inputs and single output to realize six responses, viz. low-pass, high-pass, inverting band-pass, noninverting band-pass, band-elimination, and all-pass through input selection with independent pole-Q control. Computer simulation results using SPICE are also given to verify the theory.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Dinesh Prasad ◽  
Mayank Srivastava ◽  
D. R. Bhaskar

A new resistorless single-input-multi-output (SIMO) universal transadmittance (TA) type filter employing two voltage differencing transconductance amplifiers (VDTA) and two grounded capacitors is proposed. The proposed topology realizes simultaneously low pass (LP), high pass (HP), and band pass (BP) filter functions. Band rejects (BR) and all pass (AP) filters are also realizable through appropriate connections of currents. The proposed configuration also offers independent control of natural angular frequency (ω0) and bandwidth (BW) and low active and passive sensitivities. The workability of proposed configuration has been demonstrated through PSPICE simulations with TSMC CMOS 0.18 μm process parameters.


2016 ◽  
Vol 25 (12) ◽  
pp. 1650154 ◽  
Author(s):  
Ahmet Abaci ◽  
Erkan Yuce

In this paper, two new second-order voltage-mode universal filters are proposed. Both of the proposed filters use only two differential voltage current conveyors (DVCCs), four resistors and two grounded capacitors which are advantageous from integrated circuit technology point of view. They can simultaneously provide second-order low-pass, high-pass, band-pass, notch and all-pass responses. They offer orthogonal control of angular resonance frequency and quality factor. However, they have a single matching condition for only all-pass responses. A number of simulations based on SPICE program are accomplished in order to demonstrate the performance of both filters.


2011 ◽  
Vol 20 (03) ◽  
pp. 549-555 ◽  
Author(s):  
A. K. SINGH ◽  
R. SENANI ◽  
D. R. BHASKAR ◽  
R. K. SHARMA

A number of configurations for realizing voltage-mode (VM) biquads using op-amps and OTAs have been presented in the literature, however, none of these provide the following desirable properties simultaneously: (i) realizability of all the five standard filters (namely; low pass, high pass, band pass, band stop and all pass), (ii) tunability of all the three filter parameters (namely; ω0, bandwidth or Q0 and gain) and (iii) not requiring any realization condition in any of the five filter responses. This paper presents a new configuration which does possess all the above mentioned desirable properties simultaneously while using only two internally-compensated type op-amps and a reasonable number of OTAs. The workability of the new configuration has been demonstrated by SPICE simulations based upon CMOS Op-amp and CMOS OTAs.


2015 ◽  
Vol 24 (04) ◽  
pp. 1550047 ◽  
Author(s):  
Firat Yucel ◽  
Erkan Yuce

In this paper, a new voltage-mode (VM) multifunctional filter comprising two second-generation current conveyors (CCIIs) is proposed. The proposed filter with one input and three outputs is also composed of three resistors and two grounded capacitors. The proposed filter has high input impedance; thus, it can be easily connected with other VM circuits. The proposed filter can simultaneously provide low-pass (LP), band-pass (BP) and high-pass (HP) responses. A number of time domain and frequency domain simulation results are included to confirm the claimed theory.


2015 ◽  
Vol 781 ◽  
pp. 155-159 ◽  
Author(s):  
Suriya Soisang ◽  
Kamon Jirasereemomkul ◽  
Winai Jaikla ◽  
Kohji Higuchi

This paper presents a new voltage-mode single-input multiple-output multifunctional biquadratic filter using voltage differencing differential difference amplifiers (VDDDA) with high-input impedance. It consists of two VDDDA, two resistors, and two grounded capacitors. It can synthesize basic filter functions: high-past (HP), low-pass (LP) and band-pass (BP), responding through only single structure. The natural frequency can obtain by adjusting bias currents of VDDDA without disturbing quality factors. Because of using VDDDA as an active device in the circuit, the power consumption was low. The simulation using PSPICE program indicated that circuit operation has good agreement with the theory.


Author(s):  
May Phu Pwint Wai ◽  
Peerawut Suwanjan ◽  
Winai Jaikla ◽  
Amornchai Chaichana

The commercially available IC LT1228 is an interesting active device due to its advantage features, such as a fast transconductance amplifier, a wide bandwidth over a wide range of voltage gain, low total harmonic distortion (THD), high impedance differential input, etc. The single-input triple-output (SITO) voltage-mode (VM) multifunction biquadratic filters using ICs, LT1228s are introduced in this research. This circuit design provides the three-filtering functions, low-pass (LP), high-pass (HP), and band-pass (BP), without changing the circuit architecture. It comprises three LT1228s, four resistors, and two capacitors connected to the ground. The low impedance voltage output nodes are HP and BP responses. The quality factor (Q) and the pole frequency (ω0) can be electronically and orthogonally tuned by altering the third LT1228’s bias current (IB). The PSPICE simulation and the experiment are verified to describe the circuit operation.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jitendra Mohan ◽  
Bhartendu Chaturvedi ◽  
Sudhanshu Maheshwari

The paper presents a new voltage-mode multifunction filter. The proposed filter employs single modified fully differential second generation current conveyor (FDCCII), two grounded capacitors, and three resistors. The proposed circuit enjoys the employment of two grounded capacitors (attractive for absorbing shunt parasitic capacitance and ideal for IC implementation). The proposed circuit provides all five generic filter responses (low pass (LP), high pass (HP), band pass (BP), notch (NH), and all pass (AP) filter responses) simultaneously with single input. The novel proposed filter has low active and passive sensitivities. A number of time domain and frequency domain simulation results depicted through PSPICE using 0.18 µm TSMC process parameters are included to validate the theory. The proposed circuit is expected to enhance the existing knowledge on the subject.


Sign in / Sign up

Export Citation Format

Share Document