scholarly journals Improving hemoglobin estimation accuracy through standardizing of light-emitting diode power

Author(s):  
Caje Francis Pinto ◽  
Jivan Shrikrishna Parab ◽  
Marlon Darius Sequeira ◽  
Gourish Naik

Nowadays, hemoglobin monitoring is essential during surgeries, blood donations, and dialysis. Which are normally done using invasive methods. To monitor hemoglobin, a non-invasive hemoglobin meter was developed with five fixed light-emitting diode (LED) wavelengths at 670 nm, 770 nm, 810 nm, 850 nm, 950 nm and controlled using an Arduino Uno embedded development board. A photodetector with an on-chip trans-impedance amplifier was utilized to acquire the transmitted signal through the finger using the photoplethysmography (PPG) principle. Before the standardization of LED power, we had tested the designed system on fifteen subjects for the five wavelengths and estimated the hemoglobin with an accuracy of 96.51% and root mean square error (RMSE) of 0.57 gm/dL. To further improve the accuracy, the LED power was standardized and the PPG signal was reacquired on the same subjects. With this, the accuracy improved to 98.29% and also reduced the RMSE to 0.36 gm/dL. The designed system with LED power standardization showed a good agreement with pathology results with the coefficient of determination R<sup>2</sup>=0.981. Also, Bland–Altman analysis was used to evaluate the designed system and it showed good agreement between the two measurements.

Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 711-717 ◽  
Author(s):  
Cathy M. Rushworth ◽  
Gareth Jones ◽  
Martin Fischlechner ◽  
Emma Walton ◽  
Hywel Morgan

We have integrated disposable polymer mirrors within a microfluidic chip to form a multi-pass cell, which increases the absorption path length by a maximum of 28 times, providing micromolar detection limits in a probed volume of 10 nL.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 866 ◽  
Author(s):  
Shinta Mariana ◽  
Gregor Scholz ◽  
Feng Yu ◽  
Agus Budi Dharmawan ◽  
Iqbal Syamsu ◽  
...  

Pinhole‐shaped light‐emitting diode (LED) arrays with dimension ranging from 100 μm down to 5 μm have been developed as point illumination sources. The proposed microLED arrays, which are based on gallium nitride (GaN) technology and emitting in the blue spectral region (λ = 465 nm), are integrated into a compact lensless holographic microscope for a non‐invasive, label‐free cell sensing and imaging. From the experimental results using single pinhole LEDs having a diameter of 90 μm, the reconstructed images display better resolution and enhanced image quality compared to those captured using a commercial surface‐mount device (SMD)‐based LED.


2020 ◽  
Vol 11 ◽  
Author(s):  
Mingxian Chen ◽  
Songyun Wang ◽  
Xuping Li ◽  
Lilei Yu ◽  
Hui Yang ◽  
...  

Autonomic imbalance plays a crucial role in the genesis and maintenance of cardiac disorders. Approaches to maintain sympatho-vagal balance in heart diseases have gained great interest in recent years. Emerging therapies However, certain types of emerging therapies including direct electrical stimulation and nerve denervation require invasive implantation of a generator and a bipolar electrode subcutaneously or result in autonomic nervous system (ANS) damage, inevitably increasing the risk of complications. More recently, non-invasive neuromodulation approaches have received great interest in ANS modulation. Non-invasive approaches have opened new fields in the treatment of cardiovascular diseases. Herein, we will review the protective roles of non-invasive neuromodulation techniques in heart diseases, including transcutaneous auricular vagus nerve stimulation, electromagnetic field stimulation, ultrasound stimulation, autonomic modulation in optogenetics, and light-emitting diode and transcutaneous cervical vagus nerve stimulation (gammaCore).


2019 ◽  
Vol 19 (10) ◽  
pp. 6187-6191 ◽  
Author(s):  
Seung Ho Lee ◽  
Min Seok Kim ◽  
Ok-Kyun Kim ◽  
Hyung-Hwan Baik ◽  
Ji-Hye Kim

Author(s):  
Ebrahim Najafzadeh ◽  
Parastoo Farnia ◽  
Alireza Ahmadian ◽  
Hossein Ghadiri

Purpose: A Photoacoustic Imaging (PAI) as a non-invasive hybrid imaging modality has the potential to be used in a wide range of pre-clinical and clinical applications. There are different optical excitation sources that affect the performance of PAI systems. Our goal is proving the capability of the Light-Emitting Diode (LED) based PAI system for imaging of objects in different depths. Materials and Methods: In this study the Full Width of Half Maximum (FWHM) and Contrast to Noise Ratio (CNR) of LED-based PAI system is evaluated using agar, and Poly-Vinyl Alcohol Cryogel (PVA-C) phantoms. Results: The results show that axial and lateral FWHM of the photoacoustic image in agar phantom 1%, are 0.59 and 1.16 mm, respectively. It is capable of distinguishing objects about 250 µm. Furthermore, one of the main improvements of photoacoustic images is achieved by proposed LED-based system that is a 26% higher CNR versus the ultrasound images. Conclusion: Therefore, the provided technical characteristics in this study have made designed LED-based PAI system as a suitable tool for preclinical and clinical imaging.


2017 ◽  
Vol 84 (s1) ◽  
Author(s):  
Sabrina Jahns ◽  
Andre F.K. Iwers ◽  
Jan Balke ◽  
Martina Gerken

AbstractWe present two designs of organic optoelectronics for compact lab-on-chip fluorescence detection. In the first configuration, organic light emitting diode (OLED) and organic photo diode (OPD) are fabricated


Sign in / Sign up

Export Citation Format

Share Document