scholarly journals An architectural framework for automatic detection of autism using deep convolution networks and genetic algorithm

Nagashree Nagesh ◽  
Premjyoti Patil ◽  
Shantakumar Patil ◽  
Mallikarjun Kokatanur

The brainchild in any medical image processing lied in how accurately the diseases are diagnosed. Especially in the case of neural disorders such as autism spectrum disorder (ASD), accurate detection was still a challenge. Several noninvasive neuroimaging techniques provided experts information about the functionality and anatomical structure of the brain. As autism is a neural disorder, magnetic resonance imaging (MRI) of the brain gave a complex structure and functionality. Many machine learning techniques were proposed to improve the classification and detection accuracy of autism in MRI images. Our work focused mainly on developing the architecture of convolution neural networks (CNN) combining the genetic algorithm. Such artificial intelligence (AI) techniques were very much needed for training as they gave better accuracy compared to traditional statistical methods.

Sreelakshmi S. ◽  
Anoop V. S.

Neurological disorders are diseases of the central and peripheral nervous system and most commonly affect middle- or old-age people. Accurate classification and early-stage prediction of such disorders are very crucial for prompt diagnosis and treatment. This chapter discusses a new framework that uses image processing techniques for detecting neurological disorders so that clinicians prevent irreversible changes that may occur in the brain. The newly proposed framework ensures reliable and accurate machine learning techniques using visual saliency algorithms to process brain magnetic resonance imaging (MRI). The authors also provide ample hints and dimensions for the researchers interested in using visual saliency features for disease prediction and detection.

2021 ◽  
Vol 19 (2) ◽  
pp. 19-30
G. Nagarajan ◽  
Dr.A. Mahabub Basha ◽  
R. Poornima

One main psychiatric disorder found in humans is ASD (Autistic Spectrum Disorder). The disease manifests in a mental disorder that restricts humans from communications, language, speech in terms of their individual abilities. Even though its cure is complex and literally impossible, its early detection is required for mitigating its intensity. ASD does not have a pre-defined age for affecting humans. A system for effectively predicting ASD based on MLTs (Machine Learning Techniques) is proposed in this work. Hybrid APMs (Autism Prediction Models) combining multiple techniques like RF (Random Forest), CART (Classification and Regression Trees), RF-ID3 (RF-Iterative Dichotomiser 3) perform well, but face issues in memory usage, execution times and inadequate feature selections. Taking these issues into account, this work overcomes these hurdles in this proposed work with a hybrid technique that combines MCSO (Modified Chicken Swarm Optimization) and PDCNN (Polynomial Distribution based Convolution Neural Network) algorithms for its objective. The proposed scheme’s experimental results prove its higher levels of accuracy, precision, sensitivity, specificity, FPRs (False Positive Rates) and lowered time complexity when compared to other methods.

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3100
Anusha Mairpady ◽  
Abdel-Hamid I. Mourad ◽  
Mohammad Sayem Mozumder

The selection of nanofillers and compatibilizing agents, and their size and concentration, are always considered to be crucial in the design of durable nanobiocomposites with maximized mechanical properties (i.e., fracture strength (FS), yield strength (YS), Young’s modulus (YM), etc). Therefore, the statistical optimization of the key design factors has become extremely important to minimize the experimental runs and the cost involved. In this study, both statistical (i.e., analysis of variance (ANOVA) and response surface methodology (RSM)) and machine learning techniques (i.e., artificial intelligence-based techniques (i.e., artificial neural network (ANN) and genetic algorithm (GA)) were used to optimize the concentrations of nanofillers and compatibilizing agents of the injection-molded HDPE nanocomposites. Initially, through ANOVA, the concentrations of TiO2 and cellulose nanocrystals (CNCs) and their combinations were found to be the major factors in improving the durability of the HDPE nanocomposites. Further, the data were modeled and predicted using RSM, ANN, and their combination with a genetic algorithm (i.e., RSM-GA and ANN-GA). Later, to minimize the risk of local optimization, an ANN-GA hybrid technique was implemented in this study to optimize multiple responses, to develop the nonlinear relationship between the factors (i.e., the concentration of TiO2 and CNCs) and responses (i.e., FS, YS, and YM), with minimum error and with regression values above 95%.

2021 ◽  
Hugo Abreu Mendes ◽  
João Fausto Lorenzato Oliveira ◽  
Paulo Salgado Gomes Mattos Neto ◽  
Alex Coutinho Pereira ◽  
Eduardo Boudoux Jatoba ◽  

Within the context of clean energy generation, solar radiation forecast is applied for photovoltaic plants to increase maintainability and reliability. Statistical models of time series like ARIMA and machine learning techniques help to improve the results. Hybrid Statistical + ML are found in all sorts of time series forecasting applications. This work presents a new way to automate the SARIMAX modeling, nesting PSO and ACO optimization algorithms, differently from R's AutoARIMA, its searches optimal seasonality parameter and combination of the exogenous variables available. This work presents 2 distinct hybrid models that have MLPs as their main elements, optimizing the architecture with Genetic Algorithm. A methodology was used to obtain the results, which were compared to LSTM, CLSTM, MMFF and NARNN-ARMAX topologies found in recent works. The obtained results for the presented models is promising for use in automatic radiation forecasting systems since it outperformed the compared models on at least two metrics.

2020 ◽  
Vol 17 (4) ◽  
pp. 1925-1930
Ambeshwar Kumar ◽  
R. Manikandan ◽  
Robbi Rahim

It’s a new era technology in the field of medical engineering giving awareness about the various healthcare features. Deep learning is a part of machine learning, it is capable of handling high dimensional data and is efficient in concentrating on the right features. Tumor is an unbelievably complex disease: a multifaceted cell has more than hundred billion cells; each cell acquires mutation exclusively. Detection of tumor particles in experiment is easily done by MRI or CT. Brain tumors can also be detected by MRI, however, deep learning techniques give a better approach to segment the brain tumor images. Deep Learning models are imprecisely encouraged by information handling and communication designs in biological nervous system. Classification plays an significant role in brain tumor detection. Neural network is creating a well-organized rule for classification. To accomplish medical image data, neural network is trained to use the Convolution algorithm. Multilayer perceptron is intended for identification of a image. In this study article, the brain images are categorized into two types: normal and abnormal. This article emphasize the importance of classification and feature selection approach for predicting the brain tumor. This classification is done by machine learning techniques like Artificial Neural Networks, Support Vector Machine and Deep Neural Network. It could be noted that more than one technique can be applied for the segmentation of tumor. The several samples of brain tumor images are classified using deep learning algorithms, convolution neural network and multi-layer perceptron.

2013 ◽  
Vol 3 (4) ◽  
pp. 31-46 ◽  
Hanaa Ismail Elshazly ◽  
Ahmad Taher Azar ◽  
Aboul Ella Hassanien ◽  
Abeer Mohamed Elkorany

Computational intelligence provides the biomedical domain by a significant support. The application of machine learning techniques in medical applications have been evolved from the physician needs. Screening, medical images, pattern classification, prognosis are some examples of health care support systems. Typically medical data has its own characteristics such as huge size and features, continuous and real attributes that refer to patients' investigations. Therefore, discretization and feature selection process are considered a key issue in improving the extracted knowledge from patients' investigations records. In this paper, a hybrid system that integrates Rough Set (RS) and Genetic Algorithm (GA) is presented for the efficient classification of medical data sets of different sizes and dimensionalities. Genetic Algorithm is applied with the aim of reducing the dimension of medical datasets and RS decision rules were used for efficient classification. Furthermore, the proposed system applies the Entropy Gain Information (EI) for discretization process. Four biomedical data sets are tested by the proposed system (EI-GA-RS), and the highest score was obtained through three different datasets. Other different hybrid techniques shared the proposed technique the highest accuracy but the proposed system preserves its place as one of the highest results systems four three different sets. EI as discretization technique also is a common part for the best results in the mentioned datasets while RS as an evaluator realized the best results in three different data sets.

2020 ◽  
Vol 50 (11) ◽  
pp. 4039-4052 ◽  
Kristine D. Cantin-Garside ◽  
Zhenyu Kong ◽  
Susan W. White ◽  
Ligia Antezana ◽  
Sunwook Kim ◽  

2021 ◽  
Asad Mustafa Elmgerbi ◽  
Clemens Peter Ettinger ◽  
Peter Mbah Tekum ◽  
Gerhard Thonhauser ◽  
Andreas Nascimento

Abstract Over the past decade, several models have been generated to predict Rate of Penetration (ROP) in real-time. In general, these models can be classified into two categories, model-driven (analytical models) and data-driven models (based on machine learning techniques), which is considered as cutting-edge technology in terms of predictive accuracy and minimal human interfering. Nevertheless, most existing machine learning models are mainly used for prediction, not optimization. The ROP ahead of the bit for a certain formation layer can be predicted with such methods, but the limitation of the applications of these techniques is to find an optimum set of operating parameters for the optimization of ROP. In this regard, two data-driven models for ROP prediction have been developed and thereafter have been merged into an optimizer model. The purpose of the optimization process is to seek the ideal combinations of drilling parameters that would lead to an improvement in the ROP in real-time for a given formation. This paper is mainly focused on describing the process of development to create smart data-driven models (built on MATLAB software environment) for real-time rate of penetration prediction and optimization within a sufficient time span and without disturbing the drilling process, as it is typically required by a drill-off test. The used models here can be classified into two groups: two predictive models, Artificial Neural Network (ANN) and Random Forest (RF), in addition to one optimizer, namely genetic algorithm. The process started by developing, optimizing, and validation of the predictive models, which subsequently were linked to the genetic algorithm (GA) for real-time optimization. Automated optimization algorithms were integrated into the process of developing the productive models to improve the model efficiency and to reduce the errors. In order to validate the functionalities of the developed ROP optimization model, two different cases were studied. For the first case, historical drilling data from different wells were used, and the results confirmed that for the three known controllable surface drilling parameters, weight on bit (WOB) has the highest impact on ROP, followed by flow rate (FR) and finally rotation per minute (RPM), which has the least impact. In the second case, a laboratory scaled drilling rig "CDC miniRig" was utilized to validate the developed model, during the validation only the previous named parameters were used. Several meters were drilled through sandstone cubes at different weights on bit, rotations per minute, and flow rates to develop the productive models; then the optimizer was activated to propose the optimal set of the used parameters, which likely maximize the ROP. The proposed parameters were implemented, and the results showed that ROP improved as expected.

Sign in / Sign up

Export Citation Format

Share Document