scholarly journals Explosion-proof thermal type gas flow sensor structure analysis and sensor module development

Author(s):  
Gwan-Hyung Kim ◽  
Hea-Sung Jung ◽  
In-Ho Jung

<p>The present study studied structure analysis and sensor modules for explosion-proof thermal type flow sensors that can withstand the poor surroundings of vessel engines and power plants and can be installed in gas lines. The structure analysis evaluated the integrity of the structures of the explosion-proof thermal type flow sensors with finite element analysis, and with regard to the operation of the sensor modules, those sensor modules that can detect environments where vibrations occur or where there are flows of high pressure gases or fluids were researched and developed. The explosion-proof thermal type flow sensor module consists of a sensing part, an adjustment part, and an output part, and a noise prevention circuit was added to secure the stability of the measurement signals. The flow sensor developed with the present study is a sensor module capable of measuring flows in domestic gas engines and gas piping and it is presented as a reliable sensor module because it is strong against vibrations and has excellent explosion-proof performance.</p>

2020 ◽  
Vol 4 (2) ◽  
pp. 53
Author(s):  
Nyoman Budiastra ◽  
A.A Maharta Pemayun

Abstract— One of the development of technological innovations in the field of control systems in all aspects of life is needed to maintain the stability of the work of a system, PID control to maintain the speed of water flow in the supply pipe in order to maintain the rotating speed of turbines Micro Hydro Power Plants (PLTMH) is very necessary because to maintain the generator rotational speed remains stable. To maintain the stability of the water flow, a sluice gate is needed to regulate the flow of water that comes out of the reservoir to the stockpile, the sluice is called a valve that can be controlled with a microcontroller that will open and close in accordance with the data value of the Water Flow Sensor attached to the pipe. Simulation of Water Flow Sensor with PID control is used to simulate the MHP system with PID control by comparing the output if the PID value is changed.


Author(s):  
Vitaly Gnesin ◽  
Romauld Rządkowski ◽  
Luba Kolodyazhnaya

A three-dimensional nonlinear time-marching method and numerical analysis for aeroelastic behaviour of oscillating blade row has been presented. The approach is based on the solution of the coupled fluid-structure problem in which the aerodynamic and structural equations are integrated simultaneously in time. In this formulation of a coupled problem, the interblade phase angle at which a stability (or instability) would occur, is a part of the solution. The ideal gas flow through multiple interblade passage (with periodicity on the whole annulus) is described by the unsteady Euler equations in the form of conservative laws, which are integrated by use of the explicit monotonous second order accurate Godunov-Kolgan volume scheme and a moving hybrid H-H (or H-O) grid. The structure analysis uses the modal approach and 3D finite element model of the blade. The blade motion is assumed to be a linear combination of modes shapes with the modal coefficients depending on time. The influence of the natural frequencies on the aerodynamic coefficient and aeroelastic coupled oscillations for the Fourth Standard Configuration is shown. The stability (instability) areas for the modes are obtained. It has been shown that interaction between modes plays an important role in the aeroelastic blade response. This interaction has essentially nonlinear character and leads to blade limit cycle oscillations.


1989 ◽  
Vol 13 (3) ◽  
pp. 161-173 ◽  
Author(s):  
T. M. Berlicki ◽  
E. Murawski ◽  
S. J. Osadnik ◽  
E. L. Prociòw

Some technological aspects and basic parameters of nickel thin film gas flow sensors are presented. Thermal conditions of sensors are described by the mechanisms of heat transfer. Typical characteristics measured during the sensor operation are given.


2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3860
Author(s):  
Mária Hagarová ◽  
Milan Vaško ◽  
Miroslav Pástor ◽  
Gabriela Baranová ◽  
Miloš Matvija

Corrosion of boiler tubes remains an operational and economic limitation in municipal waste power plants. The understanding of the nature, mechanism, and related factors can help reduce the degradation process caused by corrosion. The chlorine content in the fuel has a significant effect on the production of gaseous components (e.g., HCl) and condensed phases on the chloride base. This study aimed to analyze the effects of flue gases on the outer surface and saturated steam on the inner surface of the evaporator tube. The influence of gaseous chlorides and sulfates or their deposits on the course and intensity of corrosion was observed. The salt melts reacted with the steel surface facing the flue gas flow and increased the thickness of the oxide layer up to a maximum of 30 mm. On the surface not facing the flue gas flow, they disrupted the corrosive layer, reduced its adhesion, and exposed the metal surface. Beneath the massive deposits, a local overheating of the inner surface of the evaporator tubes occurred, which resulted in the release of the protective magnetite layer from the surface. Ash deposits reduce the boiler’s thermal efficiency because they act as a thermal resistor for heat transfer between the flue gases and the working medium in the pipes. The effect of insufficient feedwater treatment was evinced in the presence of mineral salts in the corrosion layer on the inner surface of the tube.


2021 ◽  
Vol 11 (9) ◽  
pp. 3770
Author(s):  
Monica Tatarciuc ◽  
George Alexandru Maftei ◽  
Anca Vitalariu ◽  
Ionut Luchian ◽  
Ioana Martu ◽  
...  

Inlay-retained dental bridges can be a viable minimally invasive alternative when patients reject the idea of implant therapy or conventional retained full-coverage fixed dental prostheses, which require more tooth preparation. Inlay-retained dental bridges are indicated in patients with good oral hygiene, low susceptibility to caries, and a minimum coronal tooth height of 5 mm. The present study aims to evaluate, through the finite element method (FEM), the stability of these types of dental bridges and the stresses on the supporting teeth, under the action of masticatory forces. The analysis revealed the distribution of the load on the bridge elements and on the retainers, highlighting the areas of maximum pressure. The results of our study demonstrate that the stress determined by the loading force cannot cause damage to the prosthetic device or to abutment teeth. Thus, it can be considered an optimal economical solution for treating class III Kennedy edentation in young patients or as a provisional pre-implant rehabilitation option. However, special attention must be paid to its design, especially in the connection area between the bridge elements, because the connectors and the retainers represent the weakest parts.


Author(s):  
Michel Arnal ◽  
Christian Precht ◽  
Thomas Sprunk ◽  
Tobias Danninger ◽  
John Stokes

The present paper outlines a practical methodology for improved virtual prototyping, using as an example, the recently re-engineered, internally-cooled 1st stage blade of a 40 MW industrial gas turbine. Using the full 3-D CAD model of the blade, a CFD simulation that includes the hot gas flow around the blade, conjugate heat transfer from the fluid to the solid at the blade surface, heat conduction through the solid, and the coolant flow in the plenum is performed. The pressure losses through and heat transfer to the cooling channels inside the airfoil are captured with a 1-D code and the 1-D results are linked to the three-dimensional CFD analysis. The resultant three-dimensional temperature distribution through the blade provides the required thermal loading for the subsequent structural finite element analysis. The results of this analysis include the thermo-mechanical stress distribution, which is the basis for blade life assessment.


1999 ◽  
Vol 09 (03n04) ◽  
pp. 417-422 ◽  
Author(s):  
V. VIJAYAN ◽  
S. N. BEHERA

Fly ash is a major component of solid material generated by the coal-fired thermal power plants. In India the total amount of fly ash produced per annum is around 100 million tonnes. Fly ash has a great potential for utilization in making industrial products such as cement, bricks as well as building materials, besides being used as a soil conditioner and a provider of micro nutrients in agriculture. However, given the large amount of fly ash that accumulate at thermal power plants, their possible reuse and dispersion and mobilization into the environment of the various elements depend on climate, soils, indigenous vegetation and agriculture practices. Fly ash use in agriculture improved various physico-chemical properties of soil, particularly the water holding capacity, porosity and available plant nutrients. However it is generally apprehended that the application of large quantity of fly ash in fields may affect the plant growth and soil texture. Hence there is a need to characterize trace elements of fly ash. The results of trace element analysis of fly ash and pond ash samples collected from major thermal power plants of India by Particle Induced X-ray Emission (PIXE) have been discussed.


Author(s):  
Jürgen Rudolph ◽  
Adrian Willuweit ◽  
Steffen Bergholz ◽  
Christian Philippek ◽  
Jevgenij Kobzarev

Components of conventional power plants are subject to potential damage mechanisms such as creep, fatigue and their combination. These mechanisms have to be considered in the mechanical design process. Against this general background — as an example — the paper focusses on the low cycle fatigue behavior of a main steam shut off valve. The first design check based on standard design rules and linear Finite Element Analysis (FEA) identifies fatigue sensitive locations and potentially high fatigue usage. This will often occur in the context of flexible operational modes of combined cycle power plants which are a characteristic of the current demands of energy supply. In such a case a margin analysis constitutes a logical second step. It may comprise the identification of a more realistic description of the real operational loads and load-time histories and a refinement of the (creep-) fatigue assessment methods. This constitutes the basis of an advanced component design and assessment. In this work, nonlinear FEA is applied based on a nonlinear kinematic constitutive material model, in order to simulate the thermo-mechanical behavior of the high-Cr steel component mentioned above. The required material parameters are identified based on data of the accessible reference literature and data from an own test series. The accompanying testing campaign was successfully concluded by a series of uniaxial thermo-mechanical fatigue (TMF) tests simulating the most critical load case of the component. This detailed and hybrid approach proved to be appropriate for ensuring the required lifetime period of the component.


2015 ◽  
Vol 712 ◽  
pp. 63-68
Author(s):  
Przemysław Osocha ◽  
Bohdan Węglowski

In some coal-fired power plants, pipeline elements have worked for over 200 000 hours and increased number of failures is observed. The paper discuses thermal wear processes that take place in those elements and lead to rupture. Mathematical model based on creep test data, and describing creep processes for analyzed material, has been developed. Model has been verified for pipeline operating temperature, lower than tests temperature, basing on Larson-Miller relation. Prepared model has been used for thermal-strength calculations based on a finite element method. Processes taking place inside of element and leading to its failure has been described. Than, basing on prepared mathematical creep model and FE model introduced to Ansys program further researches are made. Analysis of dimensions and shape of pipe junction and its influence on operational element lifetime is presented. In the end multi variable dependence of temperature, steam pressure and element geometry is shown, allowing optimization of process parameters in function of required operational time or maximization of steam parameters. The article presents wide range of methods. The creep test data were recalculated for operational temperature using Larson-Miller parameter. The creep strain were modelled, used equations and their parameters are presented. Analysis of errors were conducted. Geometry of failing pipe junction was introduced to the Ansys program and the finite element analysis of creep process were conducted.


Sign in / Sign up

Export Citation Format

Share Document