scholarly journals Power applications for fuel-cell using switching regulators

Author(s):  
Dega Rajaji Vanka ◽  
K. Chandra Sekhar

<p><strong> </strong></p>Generally the switch mode power supply input voltage source is constant or shows insignificant little varieties.in any case, when fuel call used input source the last assumption is not valid. A fuel cell stack is give a details of low and not controlled DC output voltage, moreover, when the demanded current increases the output voltage becomes low in a nonlinear form; from now on, suitable controller is required to taken the previously mentioned issues. In this article, a normal current-mode controller is planned to using a joined model for an energy unit stack and a boost converter; besides, the resolving control method increasing the system stability and output voltage regulation.. The proposed energy system utilizes an energy component power (polymer electrolyte film fuel cell) and a boost converter passing on power of 900 W. the proposed controller execution for output voltage regulation by means of closed loop gain estimations and step load changes. What's more, a correlation amongst open-and closed- loop estimations is made, where the controller robustness is tried for vast load varieties and fuel cell stack output voltage changes are shows on simulation results.

2018 ◽  
Vol 3 (3) ◽  
pp. 53-59 ◽  
Author(s):  
José Ferreira

The DC/DC boost converter is described as a time variant system. State-Space is one of the methods used to approach a time variant system to an invariant time linear system. The present document focuses on a comparative approach of output voltage regulation and system stability and performance. For this document, there were made MatLab tests of PI and PD controllers, with and without fuzzy control.


This paper presents a closed loop control of an active-clamped full-wave quasi-resonant boost converter with zero-current-switching (ZCS) for power factor correction. Possibility to incorporate higherswitching frequency and has some potency to reduce switching losses. Power factor improvement and high efficiency is achieved with a constant output voltage and DC output voltage is regulated by using closed loop control .The concept of the proposed switchingscheme results lesser switching loss, higher efficiency, possibility to have higher switching frequency, and has potential to reduce converter's conducted EMI. This paper also presents voltage regulation using closed loop system and the simulation results are verified.


2020 ◽  
Vol 1 (2) ◽  
pp. 144-149
Author(s):  
Muldi Yuhendri ◽  
Randy Setiawan

Direct current (dc) voltage sources are one of the voltage sources most widely used for various purposes. Dc voltage can be obtained from a dc generator or by converting an ac voltage into a dc voltage using a power converter. There are several dc voltage levels that are commonly used by electrical and electronic equipment. To get a dc voltage that can be used for various equipment, then a dc voltage source must be varied according to the required. One way to get a variable dc voltage is to use a dc-dc converter. This research proposes a dc-dc boost converter that can increase the dc voltage with varying outputs. The boost converter is proposed using Arduino Uno as a controller with an input voltage of 12 volts. The converter output voltage regulation is implemented through Arduino programming using Matlab simulink. The experimental results show that the boost converter designed in this study has worked well as intended. This can be seen from the boost converter output voltage which is in accordance with the reference voltage entered in the Matlab simulink program


2013 ◽  
Vol 11 (1) ◽  
Author(s):  
E. I. Vazquez-Oviedo ◽  
M. G. Ortiz-Lopez ◽  
L. H. Diaz-Saldierna ◽  
J. Leyva-Ramos

A fuel-cell stack produces a low and unregulated dc voltage; therefore, a dc-dc converter is required to step up and regulate the output voltage. A major drawback is that the output voltage of the fuel-cell stack exhibits a nonlinear behavior since the output voltage drops when more current is drawn. This output voltage will be later connected to a switch-mode dc-dc converter to step up its value; therefore, it is very important to consider the dynamic behavior of fuel-cell stack as input to a switching converter. In this work, a model is proposed for a combined fuel-cell stack/boost converter system. The interest of this model is clearly motivated by the need to have a model compatible with the standard techniques for controller design as current-mode control. The model is tested using a power module and a boost converter delivering an output power of 740 W. The power module uses polymer electrolyte membrane fuel cells (PEMFCs) and delivers a variable output dc voltage between 24 V to 42 V. Experimental results verify the theoretical results given within.


2020 ◽  
Vol 12 (2) ◽  
pp. 40-46
Author(s):  
Kevin Candra ◽  
Leonardus Heru Pratomo

Five-level inverter is widely used in many industrial applications, for example as a three-phase electric motor drive, PLTS, etc. This inverter works using two separated DC voltage sources in order to form different voltage level. Five-level inverter using one DC voltage source will be more efficient. A DC-DC boost converter on Voltage Doubler type is used in order to solve the problem. The focus of this research is on controlling the DC-DC boost converter on Voltage Doubler type. The switch control method uses a shifted pulse width modulation of 1800. To get a suitable output voltage, an output voltage control system is applied. A proportional and integral type control is implemented using STM32F1038CT microcontroller.  The output voltage controlled DC-DC boost converter is validated through computational simulation with Power Simulator software and as the final step will be implemented on hardware in the laboratory. Based on the simulation and implementation, Voltage-Doubler type of DC-DC boost converter is able to produce the required output voltage, which is two times greater than the conventional DC-DC boost converter output voltage.


Author(s):  
Rıdvan Keskin ◽  
Ibrahim Aliskan ◽  
Ersin Daş

The regulation of output voltage and equivalent distribution of phase currents of multi-phase converters which have non-minimum phase characteristic are still challenges, especially in the presence of uncertainties in real parameters, duty cycle, input voltage, and load disturbances. However, in classical third-order integral-lead (Type-III) controller design methodologies, the controller is synthesized considering only the nominal performance conditions. This paper proposes a structured [Formula: see text] synthesis framework based on an optimization methodology to the design of a robust Type-III controller for interleaved boost converters. The structured [Formula: see text] control approach is adapted for optimization of Type-III feedback and feedforward controllers in two-degree-of-freedom (2-DOF) control system configuration. The robust stability of the closed-loop interleaved boost converter system against model uncertainties is ensured via the classical [Formula: see text]-analysis technique. Numerical comparisons are made among the classical, i.e. unstructured or full order, [Formula: see text]-based controller design method, a dual-loop PI controller, and proposed 1-DOF and 2-DOF structured controller synthesis approaches on an interleaved boost converter model. Simulation results verify the effectiveness and advantages of the proposed approach from the viewpoint of the output voltage regulation under different disturbance points.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4220
Author(s):  
Dai Orihara ◽  
Hiroshi Kikusato ◽  
Jun Hashimoto ◽  
Kenji Otani ◽  
Takahiro Takamatsu ◽  
...  

Inertia reduction due to inverter-based resource (IBR) penetration deteriorates power system stability, which can be addressed using virtual inertia (VI) control. There are two types of implementation methods for VI control: grid-following (GFL) and grid-forming (GFM). There is an apparent difference among them for the voltage regulation capability, because the GFM controls IBR to act as a voltage source and GFL controls it to act as a current source. The difference affects the performance of the VI control function, because stable voltage conditions help the inertial response to contribute to system stability. However, GFL can provide the voltage control function with reactive power controllability, and it can be activated simultaneously with the VI control function. This study analyzes the performance of GFL-type VI control with a voltage control function for frequency stability improvement. The results show that the voltage control function decreases the voltage variation caused by the fault, improving the responsivity of the VI function. In addition, it is found that the voltage control is effective in suppressing the power swing among synchronous generators. The clarification of the contribution of the voltage control function to the performance of the VI control is novelty of this paper.


2011 ◽  
Vol 219-220 ◽  
pp. 383-386
Author(s):  
Jing Li ◽  
Hong Pan ◽  
Shu Juan Zhang ◽  
Ling Fang Sun

According to the single battery's series structure in the fuel cell stack, we develop an on-line fuel cell voltage monitoring system, and realize VISA library functions’ call and operation data acquisition and storage successfully in the Delphi development environment. It’s introduced mainly that the monitoring principle, hardware structure, software design and the main feature. The actual application proves that this system has realized high-precision and real-time monitoring of the output voltage of the fuel cell for multi-channel, and has multi-condition operation by setting original parameters easily, thereby, the system has more applicability and well reliability.


Author(s):  
V. N. Dolov ◽  
V. F. Strelkov ◽  
V. V. Vanyaev ◽  
A. A. Kochnev

Presented by quasi-resonant converter of a pulse of microwave power transmission device lamp radar with pulse output voltage regulation. The features of his work are given a mathematical model, the external characteristics and some simulation results in open-loop and closed-loop output voltage system.


Sign in / Sign up

Export Citation Format

Share Document