scholarly journals Dead time influence on operating modes of transistor resonant inverter with pulse frequency modulation (PFM)

Author(s):  
Mihail Hristov Antchev ◽  
Hristo Mihailov Antchev

<p>This study explores the impact of dead-time on the transistor resonant inverter operating modes depending on the ratio of the transistor switching frequency and the resonant frequency of the series-resonance circuit in the diagonal of the transistor bridge. On the basis of theoretical data and experimental results, a dead-time limitation relation has been offered - besides for a minimum value but for a maximum value. This provides extension of the operating mode range in zero voltage switching (ZVS).</p>

Author(s):  
S. Dhayanandh ◽  
S. Manoharan

Intensive utilization of Induction Heating (IH) innovations can be seen in numerous areas such as manufacturing industries, domestic or house hold and medicinal applications. The development of high switching frequency switches has encouraged the structure of high frequency inverters which are the key component of IH technology. Controlling the power output in a high frequency inverter for IH application is relatively complicated. This paper focuses on designing and developing a typical series resonance inverter and control it by FPGA-based controller. A MOSFET switch-based DC to AC converter is designed and Zero Voltage Switching (ZVS)-based switching strategy is accomplished to acquire less stress on switching devices and greater conversion efficiency. In this technique, secondary switched capacitor cell was proposed for resonant inverter of high frequency. To optimize the performance of the proposed inverter, the FPGA-based control system is implemented. Higher power density is the greatest advantage of this topology. The experimental and simulation model of the proposed series resonant inverter (SRI) for heating applications is developed and simulated using MATLAB/Simulink software.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3859
Author(s):  
Yuanjun Liu ◽  
Guiping Du ◽  
Xueyi Wang ◽  
Yanxiong Lei

A bidirectional CLLC resonant converter (CLLC-BRC) based on GaN transistors is analyzed and designed in this paper. Similar resonant topologies are listed and commented on, with the CLLC topology showing competitiveness in bidirectional energy transmission. The analysis of the aforementioned converter has been provided, including the reveal of resonant frequencies of the CLLC topology and an improved zero-voltage switching (ZVS) condition with operation principles of the reverse mode and relevant parasitic parameters taken into account. The design methodology of the aforementioned converter based on pulse frequency modulation (PFM) is further discussed in detail. A prototype with a rated power of 400 W and a maximal operating frequency that is larger than 0.5 MHz was built to verify the proposed design methodology. The highest conversion efficiency of the prototype was 97.02% in the forward mode, and it was 95.96% in the reverse mode.


2013 ◽  
Vol 860-863 ◽  
pp. 2390-2394
Author(s):  
Min Chin Lee ◽  
Ruey Wun Jan

A lower power consumption, smaller output ripple and better regulation buck dcdc converter controlled by voltage feedback and pulse-frequency modulation (PFM) mode is implemented in this paper. The converter operating in discontinuous conduction mode (DCM) is designed and simulated using the TSMC 0.18μm 1P6M CMOS Process. Hspice simulation results show that, the buck converter having chip size with power dissipation about 0.68mW. This chip can operate with input supply voltage from 1.2V to 1.8V, and switching frequency from 249KHz () to 50KHz (), and its output voltage can stable at 1.0V and less than 110mV ripple voltage at maximum loading current 100 mA.


2018 ◽  
Vol 15 (2) ◽  
pp. 685-689
Author(s):  
Soundiraraj Nallasamy ◽  
Rajasekaran Vairamani

An LLC resonant dc to dc converter in the company of an LC ant resonant tank circuit for civilizing the act of pulse frequency modulation (PFM) is projected in this manuscript. The planned converter, known as LLC-LC converter, can expand a voltage guideline area below the unity gain with a lesser frequency variation of Pulse frequency modulation by the effect of the antiresonant tank. This beneficial possessions contribute for shielding over current in the case of the short-circuit load condition as well as the bring into being interval in the planned band of switching frequency. The circuit topology and working theory of the planned converter is described, subsequent to the design method of the working frequency and circuit parameters are offered. The performance of the soft switch and the steady-state pulse frequency modulation distinctiveness of the LLC-LC converter are evaluated underneath the open-loop control in conduct experiment of a 2.0-kiloWatts trial product, and its real effectiveness is compared with an LLC converter model. Intended for enlightening the usefulness of the LLC-LC resonant circuit, voltages and currents of the series and ant resonant tanks are analyzed, correspondingly, with state-plane trajectory based on computation and experimentation, where by the power and energy of resonant tank is verified. To conclude, the possibility of the projected converter is evaluate from the realistic point of vision.


Author(s):  
Y. V. Yakymiv ◽  
O. M. Bortniak

Transportation of oil via main pipelines often requires the need for a permanent or periodic dumping of some part of the flow for further shipment of crude oil to oil refineries or filling stations. The application of such technology leads to a change in the operating mode of oil pumping stations and the oil transportation system in general. In case of emergency, an analogue of dumping is an oil leak from the pipeline in a case of violation of its integrity. Resetting a part of the flow is accompanied by a change in a liquid flow ahead of and behind the discharge point, which inevitably leads to a redistribution of pressures at the inlet and outlet of transitional petroleum pumping stations. Increasing of pressure at the output of the stations may lead to the violation of the pipeline strength; reducing of input shoring may cause cavitation operating modes of the equipment. Therefore, the study of the impact of discharges on the parameters of the operation of oil transportation systems in order to ensure their reliable, safe and economically efficient functioning is a relevant point of this area. For this purpose, based on the proposed calculated algorithms implemented in the software, the authors conducted the research on the impact of periodic oil discharges on the redistribution of hydraulic flows, energy losses at the bends, pressure at the inlet and outlet of oil pumping stations, as well as the volume of trunk oil pipelines capacity. The approbation of the proposed elaboration is carried out by defining the operational parameters of processing in functioning of oil and transport system «Druzhba» at the Mozyr-Tukholsky pass, which runs throughout the territory of Ukraine. Based on the analysis of the obtained results it was established that, depending on the volume of a discharge, the location of the limiting area, which limits the entry capacity of the trunk pipeline in general, might be changed. At the same time, the bend, ahead of which the part of oil is discharged, is not always limiting. Increasing the volume of a discharge leads to growing capacity of the pipeline at the area ahead of the point of discharge in the case when the limiting pipeline bend is behind the discharge point. If such a bend is located on the pipeline ahead of the discharge point, the increasing discharge does not affect the capacity of the initial area of the pipeline.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3250
Author(s):  
G Kiran Kumar ◽  
Tarakanath Kobaku ◽  
Subham Sahoo ◽  
Bidyadhar Subudhi ◽  
Devaraj Elangovan ◽  
...  

This paper reviews and discusses the state of the art of integrated switched-capacitor and integrated inductive power converters and provides a perspective on progress towards the realization of efficient and fully integrated DC–DC power conversion. A comparative assessment has been presented to review the salient features in the utilization of transistor technology between the switched-capacitor and switched inductor converter-based approaches. First, applications that drive the need for integrated switching power converters are introduced, and further implementation issues to be addressed also are discussed. Second, different control and modulation strategies applied to integrated switched-capacitor (voltage conversion ratio control, duty cycle control, switching frequency modulation, Ron modulation, and series low drop out) and inductive converters (pulse width modulation and pulse frequency modulation) are then discussed. Finally, a complete set of integrated power converters are related in terms of their conditions and operation metrics, thereby allowing a categorization to provide the suitability of converter technologies.


Author(s):  
Hussain Attia ◽  
Hang Seng Che ◽  
Tan Kheng Suan Freddy ◽  
Ahmad Elkhateb

The dead-time is necessary to be inserted between the gates drive pulses of the two power electronic switches in a one leg of any inverter to avoid a short circuit in the leg and the DC supply as well. However, adding the dead-time increases the low order harmonics of the output voltage/current waveform of the inverter. This paper investigates the positive effects of decreasing the pulse width modulation (PWM) drive pulses number per fundamental period on the current low order harmonics. In addition, this paper evaluates the impact of the confined band variable switching frequency pulse width modulation (CB-VSFPWM) technique on inverter performance in terms of dead-time mitigating, and consequenctely lowering the low order harmonics. CB-VSFPWM technique reduces the total harmonic distortion (THD) levels in the inverter output current as well. Theoretical analysis of the CB-VSFPWM effectiveness in reducing the negative effect of the dead-time has explained in this study and confirmed by the MATLAB/Simulink simulation results.


Author(s):  
Elmehdi Mabrouk

The Global climate change and the lack of fossil fuels reserves have already had observable effects on the environment. Therefore, an undeniable investment is being made to respond these heavy challenges and to accelerate the momentum towards further embracing the electrification of transportation in smart microgrids, energy efficiency and clean energy production. The paper presents a novel cost-effective management of non-renewable resources of a multi-microgrid system under different operating modes (islanded, connected) with integrating renewable energy sources. Also, we investigate the impact of controlling vehicle-to-grid (V2G) operations on the multi-microgrid system by establishing a coordinated charging control strategy for plug-in electric vehicles (PEVs) with the aim of obtaining the maximum benefit from the grid as well as minimize the overall operating cost of the system. Both, the management of the multi-microgrid system and the EVs charging strategy have been formulated and solved using the Genetic Algorithm (GA), where the obtained results have shown that this method increases the quality, and the efficiency of obtained day-ahead scheduling solutions under any operating mode.


Author(s):  
Phuong Vu ◽  
Manh Linh Nguyen ◽  
Viet Phuong Pham

In this research, the zero-voltage switching (ZVS) of the GaN FETs-based high frequency three-port half-bridge converter (TPHBC), which is capable of interfacing a renewable energy source, an energy storage and a load is discussed. To achieve ZVS, which plays a key role in power loss reduction of the high switching frequency converters, not only the parasitic elements but also the dead-time between two switches in one converter arm must be taken into account. This research gives a detail analysis about the influence of the dead-time on the ZVS condition. Based on the analysis, a minimum dead-time which guarantees not only the ZVS but also the safe operation of the converter is obtained. Simulations in various load condition of the TPHBC are carried out to verify the validity and effectiveness of the proposed method.


2014 ◽  
Vol E97.C (3) ◽  
pp. 194-197 ◽  
Author(s):  
Yoshitaka TAKAHASHI ◽  
Hiroshi SHIMADA ◽  
Masaaki MAEZAWA ◽  
Yoshinao MIZUGAKI

Sign in / Sign up

Export Citation Format

Share Document