Novel Symmetric and Asymmetric Multilevel Inverter Topology for Permanent Magnet Synchronous Motor

Author(s):  
Aparna Prayag ◽  
Sanjay Bodkhe

In this paper a new, simple multilevel inverter topology is proposed. Multilevel inverter uses several dc sources and power switches to synthesize desired output voltage waveform. The single phase structure of proposed topology in this paper consists of two dc sources and eight power switches. When the magnitudes of dc sources are equal it operates in symmetric mode, however in order to increase output voltage levels unequal magnitudes of dc sources are selected, then it operates in asymmetric mode. So far, multilevel inverter topologies have been used in motor drive industry to run induction motors. Recently permanent magnet synchronous motors (PMSM) are replacing induction motors.  Multilevel inverter is an attracting choice for driving high performance PMSM. However very few studies discuss the performance of multilevel inverter fed PMSM. In this paper simulation of novel symmetric and asymmetric multilevel inverter is carried out to analyze performance of PMSM. The topology is investigated through computer simulation using MATLAB/Simulink.

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6047
Author(s):  
Yujiao Zhao ◽  
Haisheng Yu ◽  
Shixian Wang

This article presents an improved super-twisting high-order sliding mode observer for permanent magnet synchronous motors to achieve high-performance sensorless control. The proposed observer is able to simultaneously estimate rotor position and speed, as well as track parameter disturbances online. Then, according to the back-EMF model, the sensorless observer is further constructed to improve the estimation effect. The estimated rotor position and speed are used to replace the actual values detected by the sensor, and the estimated parameter disturbances are considered as feedback values to compensate the command voltage. In this way, not only is the estimation accuracy improved, but the robustness against uncertainties is also enhanced. Simulation and experimental results show that the proposed observer can effectively track the rotor position and speed and obtain good dynamic and steady-state performance.


2013 ◽  
Vol 732-733 ◽  
pp. 1105-1109
Author(s):  
Xiao Feng Peng ◽  
Peng Xu ◽  
Li Zhang ◽  
Wen Lue Wan

Permanent magnet synchronous motors(PMSM) as a representative of high efficiency motor was being used widely in the area of medium and small-sized power, high-accuracy,high reliability and wide-scope speed governing servo system.Otherwise,because traditional PI controller can not satisfy the high-performance of PMSM servo system,Fuzzy self-tuning PI(Fuzzy-PI) control method was used in this system, and proportion and integral parameter of PI controller is optimized by fuzzy logic.By simulation experiment, it was proved that Fuzzy-PI method had more steady and less q-axis current pulse to PI control in the transition procedure of PMSM governing.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1703
Author(s):  
Md Reyaz Hussan ◽  
Adil Sarwar ◽  
Marif Daula Siddique ◽  
Saad Mekhilef ◽  
Shafiq Ahmad ◽  
...  

The recent advancement in the application of the internet of things in the smart grid has led to an industrial revolution in the power industry. The Industry 4.0 revolution has already set in, allowing computers to interact for an efficient and intelligent approach in solving smart grid issues. multilevel inverters (MLIs) are an integral part of the smart grid system for integrating the distributed generation sources and storage energy systems into the smart grid. It attracted attention in industrial applications as they can handle high power and high voltage with an inherent feature of superior output voltage waveform quality. Moreover, its variant, the switched-capacitor MLI (SCMLI), has the added benefit of lesser DC supply requirement. In this paper, a switched-capacitor multilevel inverter topology has been proposed, which can operate in symmetric and asymmetric mode. The proposed SCMLI generate thirteen and thirty-one level output voltages for symmetric and asymmetric selection of DC voltage sources, respectively. The proposed SCMLI has a smaller number of switching devices for a given output voltage level as compared to other recently proposed topologies. A thorough comparison is presented with the recently proposed topologies on several parameters, including cost function. To validate the proposed topology, symmetric and asymmetric cases were simulated using Matlab® 2018a and the results were verified using an experimental hardware setup.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1461-1468
Author(s):  
Ting Dong ◽  
Juyan Huang ◽  
Bing Peng ◽  
Ling Jian

The calculation accuracy of unbalanced magnetic forces (UMF) is very important to the design of rotor length, because it will effect the shaft deflection. But in some permanent magnet synchronous motors (PMSMs) with fractional slot concentrated windings (FSCW), the UMF caused by asymmetrical stator topology structure is not considered in the existing deflection calculation, which is very fatal for the operational reliability, especially for the PMSMs with the large length-diameter ratio, such as submersible PMSMs. Therefore, the part of UMF in the asymmetrical stator topology structure PMSMs caused by the choice of pole-slot combinations is analysized in this paper, and a more accurate rotor deflection calculation method is also proposed.


Author(s):  
Taiea. A. Ahmed ◽  
Essam Mohamed ◽  
Abdel-Raheem Youssef ◽  
A. A.Ibrahim

Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 74
Author(s):  
Chan-Ho Baek ◽  
Hyo-Seob Shin ◽  
Jang-Young Choi

In this study, the iron losses of high flux density concentrated winding-type interior permanent magnet synchronous motors for three different magnet shapes (single-V, single-flat, and dual-delta) and rotor structures are analyzed and compared. Iron loss is analyzed using the classical Steinmetz equation (CSE) based on the frequency separation approach using the iron loss material table, and each rotor type is compared. In addition, to validate the hysteresis loss for each rotor type, two additional analyses are performed. In the methods considered, the number of minor loops is counted, and the area is calculated based on DC bias. The eddy current loss is compared using two approaches: CSE base frequency separation and the homogenization method considering the skin effect. This study primarily focuses on the comparison of relative iron losses based on different rotor topologies instead of absolute comparisons.


2012 ◽  
Vol 220-223 ◽  
pp. 1040-1043
Author(s):  
Hong Cui ◽  
You Qing Gao

High-speed permanent magnet synchronous motor (PMSM) is more and more widely applied in high precision processing and high-performance machines. It is very important to research practical control strategy for the stability operation of the high-speed PMSM. The strategy of sensorless grey prediction fuzzy direct torque control (DTC) is proposed which is suitable for high-speed PMSM control system. The method of prediction fuzzy control based on DTC is used to gain the flux, torque and flux oriented angle through the prediction model of the motor parameters. The best control scheme is gained by fuzzy reasoning to overcome the lag on the system making the adjustment process stable and realizing accurate predictive control. Thereby, the dynamic response of the system, anti-disturbance capability and control accuracy can be improved.


Sign in / Sign up

Export Citation Format

Share Document