Effect of chronic treatment with acetylsalicylic acid and clopidogrel on atheroprogression and atherothrombosis in ApoE-deficient mice in vivo

2008 ◽  
Vol 99 (01) ◽  
pp. 190-195 ◽  
Author(s):  
Ildiko Konrad ◽  
Susanne Sauer ◽  
Lena Orschiedt ◽  
Maria Koellnberger ◽  
Reinhard Lorenz ◽  
...  

SummaryAcetylsalicylic acid (ASA) and the thienopyridine clopidogrel are established anti-platelet drugs that significantly reduce secondary cardiovascular events in patients with manifest atherosclerosis. However, their impact on atherosclerotic lesion development remains controversial. Four-week-old ApoE-deficient mice were randomly assigned to four groups receiving a cholesterol diet together with either ASA (5 mg/kg), or clopidogrel (25 mg/kg), or a combination of both ASA and clopidogrel, or vehicle for 8–12 weeks. Using intravital microscopy we found that daily administration of ASA in combination with clopidogrel reduces platelet thrombus formation following rupture of atherosclerotic plaque in vivo by ∼50%. However, therapy with ASA or clopidogrel alone, or in combination for a period of 8–12 weeks had no significant effect on adhesion of platelets to dysfunctional endothelial cells or on atherosclerotic lesion formation in the aortic root or the carotid artery. In conclusion, anti-platelet therapy is effective in reducing platelet adhesion and subsequent thrombus formation following rupture of atherosclerotic plaque in vivo. However, our data do not support a role of either drug in the primary prevention of atherosclerosis in ApoE-deficient mice.

1977 ◽  
Author(s):  
R. Wiedemann ◽  
W. Weichert ◽  
K. Breddin

The film presents observations in small mesenteric vessels (diameter 10-20 μm) of the rat using high power Nomarski optics. Under stasis conditions platelets appear as flat discs. Leucocytes are often seen creeping slowly along the intact vessel wall. Vascular lesions are produced with a focused laser beam (Hadron 513 biolaser). Immediately after the lesion platelets stick to the site of the microburn either in their native disc like shape without apparent morphologic changes or with protrusions. Within seconds these platelets swell and form protrusions. After 3-10 min, depending on the size of the lesion the vessel is occluded by a platelet thrombus. Platelets undergo further swelling. Later the thrombus is partially or completely swept away and the vessel is recanal i zed. Irreversible fusion of platelets is rarely observed. . New, usually smaller thrombi form at the damaged vessel wall. The morphologic platelet changes observed differ markedly from the changes observed during aggregation in vitro. After injection of a new antithrombotic substance (Bay G 7565) the adhesion of platelets to the damaged area is remarkably diminished. The few platelets which adhere to the site of injury show the same swelling and transformation like in untreated animals. The film demonstrates that it is possible to investigate morphologic changes of single platelets during thrombus formation. It seems possible to adapt this model for the in vivo study of antithrombotic drugs.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 818-818
Author(s):  
Yacine Boulaftali ◽  
Benoit Ho-Tin-Noe ◽  
Ana Pena ◽  
Stéphane Loyau ◽  
Laurence Venisse ◽  
...  

Abstract Abstract 818 Fibrinolysis, a physiological process leading to clot resorbtion, is strictly controlled by fibrin-localized plasminogen activators (tPA and uPA) and by inhibitors like plasminogen activator type-1 (PAI-1). The serpin PAI-1 is a plasmatic serine protease inhibitor, that is also stored in platelets α-granules. PAI-1 inhibits both the action of urokinase- and tissue-type plasminogen activators (uPA and tPA respectively), and is up to now considered as the principal inhibitor of fibrinolysis in vivo. Interestingly, platelets are also known to inhibit fibrinolysis by both PAI-1-dependent and PAI-1-independent mechanisms. The individual role of other serpins, specifically protease nexin-1 (PN-1) in the thrombolytic process has not been investigated so far. Indeed, we recently demonstrated that a significant amount of PN-1 is stored within the α-granules of platelets and plays an antithrombotic function in vivo. PN-1, also known as SERPINE2, deserves a special interest since it also significantly inhibits in vitro uPA, tPA and plasmin. In this study, we explored the effect of PN-1 on fibrinolysis in vitro and in vivo. We evidenced the antifibrinolytic activity of platelet PN-1 in vitro using a specific PN-1-blocking antibody and PN-1 deficient platelets and, in vivo in PN-1−/− mice. Our data directly indicate that platelet PN-1 inhibits both tPA and plasmin activities in fibrin zymography. Remarkably, whereas fibrin-bound tPA or plasmin activity is not affected by PAI-1, we showed that PN-1 inhibits both plasmin generation induced by tPA-bound to fibrin and fibrin-bound plasmin. Moreover, PN-1 blockade or PN-1 deficiency result in an increased lysis of fibrin clots generated from platelet-rich plasma indicating that PN-1 regulates endogenous tPA-mediated lysis. Rotational thromboelastometry (ROTEM®) analysis shows that platelet PN-1 significantly decreases the rate of fibrinolysis ex vivo. Futhermore, blockade or deficiency of PN-1 provides direct evidence for an acceleration of the lysis-front velocity in platelet-rich clots. To challenge the role of PN-1 on fibrinolysis in vivo, we have developed an original murine model of thrombolysis. Using a dorsal skinfold chamber, thrombus formation induced by ferric chloride injury of venules and subsequent thrombolysis were visualized by microscopy on alive animals. This new approach allows a reproducible quantification of thrombus formation and of tPA- induced thrombus lysis. We observed that thrombi are more readily lysed in PN-1-deficient mice than in wild-type mice. Moreover, in PN-1 deficient mice, the rate and the extent of reperfusion were both increased (Figure A and B). These data demonstrate that platelet PN-1 is a new negative regulator of thrombolysis activity of plasmin, both in solution and within the clot. For the first time, this study shows that PN-1 protects towards thrombolysis and therefore could give rise to new approaches for therapeutic application. Indeed, PN-1 might be a promising target for optimizing thrombolytic therapy by tPA. Figure : Effect of PN-1 on thrombolysis. (A) Representative intravital images of vessels reperfusion after tPA treatment in dorsal skinfold chamber. (B) Quantification of the incidence of reperfused vessels within 1 hour post tPA treatment Figure :. Effect of PN-1 on thrombolysis. (A) Representative intravital images of vessels reperfusion after tPA treatment in dorsal skinfold chamber. (B) Quantification of the incidence of reperfused vessels within 1 hour post tPA treatment Disclosures: No relevant conflicts of interest to declare.


1967 ◽  
Vol 18 (03/04) ◽  
pp. 592-604 ◽  
Author(s):  
H. R Baumgartner ◽  
J. P Tranzer ◽  
A Studer

SummaryElectron microscopic and histologic examination of rabbit ear vein segments 4 and 30 min after slight endothelial damage have yielded the following findings :1. Platelets do not adhere to damaged endothelial cells.2. If the vessel wall is denuded of the whole endothelial cell, platelets adhere to the intimai basement lamina as do endothelial cells.3. The distance between adherent platelets as well as endothelial cells and intimai basement lamina measures 10 to 20 mµ, whereas the distance between aggregated platelets is 30 to 60 mµ.4. 5-hydroxytryptamine (5-HT) is released from platelets during viscous metamorphosis at least in part as 5-HT organelles.It should be noted that the presence of collagen fibers is not necessary for platelet thrombus formation in vivo.


1979 ◽  
Vol 42 (02) ◽  
pp. 603-610 ◽  
Author(s):  
J H Adams ◽  
J R A Mitchell

SummaryThe ability of potential anti-thrombotic agents to modify platelet-thrombus formation in injured cerebral arteries in the rabbit was tested. Low doses of heparin were without effect, while higher doses produced variable suppression of white body formation but at the expense of bleeding. Aspirin did not inhibit white body formation but another non-steroid anti-inflammatory agent, flurbiprofen was able to do so, as was the anti-gout agent, sulphinpyrazone. Magnesium salts both topically and parenterally, suppressed thrombus formation and increased the concentration of ADP which was required to initiate thrombus production at minor injury sites.


2006 ◽  
Vol 203 (7) ◽  
pp. 1795-1803 ◽  
Author(s):  
Himanshu Kumar ◽  
Taro Kawai ◽  
Hiroki Kato ◽  
Shintaro Sato ◽  
Ken Takahashi ◽  
...  

IFN-β promoter stimulator (IPS)-1 was recently identified as an adapter for retinoic acid–inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (Mda5), which recognize distinct RNA viruses. Here we show the critical role of IPS-1 in antiviral responses in vivo. IPS-1–deficient mice showed severe defects in both RIG-I– and Mda5-mediated induction of type I interferon and inflammatory cytokines and were susceptible to RNA virus infection. RNA virus–induced interferon regulatory factor-3 and nuclear factor κB activation was also impaired in IPS-1–deficient cells. IPS-1, however, was not essential for the responses to either DNA virus or double-stranded B-DNA. Thus, IPS-1 is the sole adapter in both RIG-I and Mda5 signaling that mediates effective responses against a variety of RNA viruses.


2017 ◽  
Vol 37 (5) ◽  
pp. 823-835 ◽  
Author(s):  
Christopher W. Smith ◽  
Steven G. Thomas ◽  
Zaher Raslan ◽  
Pushpa Patel ◽  
Maxwell Byrne ◽  
...  

Objective— Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor that belongs to the inhibitory immunoreceptor tyrosine-based inhibition motif–containing receptor family. It is an inhibitor of signaling via the immunoreceptor tyrosine-based activation motif–containing collagen receptor complex, glycoprotein VI-FcRγ-chain. It is expressed on hematopoietic cells, including immature megakaryocytes, but is not detectable on platelets. Although the inhibitory function of LAIR-1 has been described in leukocytes, its physiological role in megakaryocytes and in particular in platelet formation has not been explored. In this study, we investigate the role of LAIR-1 in megakaryocyte development and platelet production by generating LAIR-1–deficient mice. Approach and Results— Mice lacking LAIR-1 exhibit a significant increase in platelet counts, a prolonged platelet half-life in vivo, and increased proplatelet formation in vitro. Interestingly, platelets from LAIR-1–deficient mice exhibit an enhanced reactivity to collagen and the glycoprotein VI–specific agonist collagen-related peptide despite not expressing LAIR-1, and mice showed enhanced thrombus formation in the carotid artery after ferric chloride injury. Targeted deletion of LAIR-1 in mice results in an increase in signaling downstream of the glycoprotein VI–FcRγ-chain and integrin αIIbβ3 in megakaryocytes because of enhanced Src family kinase activity. Conclusions— Findings from this study demonstrate that ablation of LAIR-1 in megakaryocytes leads to increased Src family kinase activity and downstream signaling in response to collagen that is transmitted to platelets, rendering them hyper-reactive specifically to agonists that signal through Syk tyrosine kinases, but not to G-protein–coupled receptors.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ahmed Alarabi ◽  
Zubair Karim ◽  
Victoria Hinojos ◽  
Patricia A Lozano ◽  
Keziah Hernandez ◽  
...  

Platelet activation involves tightly regulated processes to ensure a proper hemostasis response, but when unbalanced, can lead to pathological consequences such as thrombus formation. G-protein coupled receptors (GPCRs) regulate platelet function by interacting with and mediating the response to various physiological agonists. To this end, an essential mediator of GPCR signaling is the G protein Gαβγ heterotrimers, in which the βγ subunits are central players in downstream signaling pathways. While much is known regarding the role of the Gα subunit in platelet function, that of the βγ remains poorly understood. Therefore, we investigated the role of Gβγ subunits in platelet function using a Gβγ (small molecule) inhibitor, namely gallein. We observed that gallein inhibits platelet aggregation and secretion in response to agonist stimulation, in both mouse and human platelets. Furthermore, gallein also exerted inhibitory effects on integrin αIIbβ3 activation and clot retraction. Finally, gallein’s inhibitory effects manifested in vivo , as documented by its ability to modulate physiological hemostasis and delay thrombus formation. Taken together, our findings demonstrate, for the first time, that Gβγ directly regulates GPCR-dependent platelet function, in vitro and in vivo . Moreover, these data highlight Gβγ as a novel therapeutic target for managing thrombotic disorders.


Author(s):  
Jelena Damm ◽  
Joachim Roth ◽  
Rüdiger Gerstberger ◽  
Christoph Rummel

AbstractBackground:Studies with NF-IL6-deficient mice indicate that this transcription factor plays a dual role during systemic inflammation with pro- and anti-inflammatory capacities. Here, we aimed to characterize the role of NF-IL6 specifically within the brain.Methods:In this study, we tested the capacity of short interfering (si) RNA to silence the inflammatory transcription factor nuclear factor-interleukin 6 (NF-IL6) in brain cells underResults:In cells of a mixed neuronal and glial primary culture from the ratConclusions:This approach was, thus, not suitable to characterize the role NF-IL6 in the brain


2021 ◽  
Author(s):  
Arnika K Wagner ◽  
Nadir Kadri ◽  
Chris Tibbitt ◽  
Koen van de Ven ◽  
Sunitha Bagawath-Singh ◽  
...  

ABSTRACTAlthough PD-1 was shown to be a hallmark of T cells exhaustion, controversial studies have been reported on the role of PD-1 on NK cells. Here, we found by flow cytometry and single cell RNA sequencing analysis that PD-1 can be expressed on MHC class I-deficient tumor-infiltrating NK cells in vivo. We also demonstrate distinct alterations in the phenotype of PD-1-deficient NK cells which in part could be attributed to a decrease in tumor-infiltrating NK cells in PD-1-deficient mice. NK cells from PD-1-deficient mice exhibited a more mature phenotype which might reduce their capacity to migrate and kill in vivo. Finally, our results demonstrate that PD-L1 molecules in membranes of PD-1-deficient NK cells migrate faster than in NK cells from wildtype mice, suggesting that PD-1 and PD-L1 form cis interactions with each other on NK cells.


Sign in / Sign up

Export Citation Format

Share Document