Megakaryocyte gene targeting mediated by restricted expression of recombinase Cre

2011 ◽  
Vol 105 (01) ◽  
pp. 138-144 ◽  
Author(s):  
Adam Nowakowski ◽  
Sonia Alonso-Martín ◽  
Elena Arias-Salgado ◽  
Darío Fernández ◽  
MariPaz Vilar ◽  
...  

SummaryThe availability of mice with tissue-specific expression of recombinase Cre is the limiting step for a successful gene targeting by the Cre-LoxP methodology. This work aimed at generating transgenic mice with restricted expression of recombinase Cre in megakaryocytes and platelets, driven by the promoter of the αIIb gene (mαIIb-cre). Mice oocytes were microinjected with a 4.1 Kb construct comprising a 2.7 Kb promoter fragment of the glycoprotein αIIb gene, linked to the CrecDNA and followed by the polyA tail of the SV40. We found four mice with positive DNA genotype and three probable sites of genomic integration of the transgene. Only two of the founders showed presence of Cre-mRNA and production of Cre protein, restricted to megakaryocytes. The activity of Cre in mediating gene targeting was assessed by crossing mαIIb-cre mice to Cre-reporter mice (ROSA26-lacZ). The activity of β-galactosidase, detected only in megakaryocytes, was sufficient to generate intense staining of X-Gal in hepatic haematopoietic islands of 14.5 dpc fetuses, in bone marrow megakaryocytes and platelets from adult mice as well as in vitro cultured megakaryocytes differentiated from bone marrow hematopoietic stem cells. Moreover, the recombinase activity was sufficient to produce the specific gene targeting of a floxed CD40L allele in megakaryocytes. The mαIIb-cre transgenic mice with restricted production of Cre in megakaryocytes, offers a selective, alternative, new tool for the genetic analysis of platelet pathophysiology.

2020 ◽  
Vol 36 (1) ◽  
Author(s):  
Hyun Jung Chin ◽  
So-young Lee ◽  
Daekee Lee

Abstract Genetically engineered mouse models through gene deletion are useful tools for analyzing gene function. To delete a gene in a certain tissue temporally, tissue-specific and tamoxifen-inducible Cre transgenic mice are generally used. Here, we generated transgenic mouse with cardiac-specific expression of Cre recombinase fused to a mutant estrogen ligand-binding domain (ERT2) on both N-terminal and C-terminal under the regulatory region of human vasoactive intestinal peptide receptor 2 (VIPR2) intron and Hsp68 promoter (VIPR2-ERT2CreERT2). In VIPR2-ERT2CreERT2 transgenic mice, mRNA for Cre gene was highly expressed in the heart. To further reveal heart-specific Cre expression, VIPR2-ERT2CreERT2 mice mated with ROSA26-lacZ reporter mice were examined by X-gal staining. Results of X-gal staining revealed that Cre-dependent recombination occurred only in the heart after treatment with tamoxifen. Taken together, these results demonstrate that VIPR2-ERT2CreERT2 transgenic mouse is a useful model to unveil a specific gene function in the heart.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2149-2149
Author(s):  
Serena De Vita ◽  
Yanhua Li ◽  
Chad Everett Harris ◽  
Meaghan McGuinness ◽  
David A. Williams

Abstract Successful engraftment of hematopoietic stem and progenitor cells (HSPCs) during bone marrow transplantation requires appropriate homing and retention of transplanted cells in the bone marrow (BM) and the activation of a proliferative program in response to signals from the hematopoietic microenvironment (HM). Molecular pathways regulating migration, homing and retention of HSPCs in the BM are integrated by RhoGTPasesincluding Rac and CDC42, however the complex cues that drive the proliferative response of these cells following transplantation are less clear. We have previously described the hematopoietic phenotype of adult mice lacking Vav1, a multi-domain, hematopoietic-specific GEF for Rac and CDC42. Deletion of Vav1 does not affect steady state hematopoiesis in adult mice, but severely compromises the engraftment potential of HSPCs. In the absence of Vav1, signal transduction from SDF1α is impaired in HSPCs, leading to abnormal localization and reduced retention of these cells in the HM, a phenotype similar to deficiency of Rac (Sanchez-Aguilera et al. PNAS, 2011). Here, we define an unexpected role for Vav1 in mediating post-irradiation proliferative responses of HSPCs. Surprisingly, we observed that deletion of Vav1 does not affect HSPC migration during ontogeny, a process largely mediated by SDF1α. The number of immunophenotypically and functionally defined HSPCs in Vav1-/- E13.5 fetal liver (FL) was comparable to WT (Table 1). Similarly, no difference was detected in HSPCs in the peripheral blood (PB) of E18.5 embryos or in the BM of newborn mice. However, similar to adult cells, Vav1-/- fetal HSCPs showed severely defective engraftment in lethally irradiated recipients (see Table 2). In marked contrast, both adult and fetal Vav1-/- HSCPs could engraft non-irradiated (Kit W/Wv Rag2- γc-) recipients, achieving successful correction of the macrocytic anemia and B cell leukopenia phenotype of recipient mice (Table 2, in red). Reduced proliferation of Vav1-/- HSPCs was also observed in vitro upon co-culture with primary irradiated stromal cells (Table 3). No differences among genotypes were detected when using non-irradiated stromal cells. These data suggest a distinct role for Vav1 in mediating responses of HSPCs to the HM after irradiation. To further clarify this phenotype, we investigated the role of individual soluble factors on proliferative responses of Vav1 HSPCs. Given their known role in expansion and proliferation of hematopoietic progenitors we focused on gp130 cytokines. We found that both IL-6 and IL-11, prominent members of this cytokine family, were increased in the BM of irradiated WT recipients, compared to both non-irradiated WT recipients (3x and 2x increase) and Kit W/Wv Rag2- γc- (2x and 3x increase) age- and sex-matched animals. To validate the potential role of IL-6 and IL-11 in Vav1 function, we stimulated HSPCs with both cytokines and observed that they induced phosphorylation of Vav1 and activation of Rac, but not CDC42. Using CFU assays, liquid culture experiments and BrdU analysis we confirmed that deletion of Vav1 abolishes the proliferative responses elicited by IL-6 and IL-11 on HSPCs in vitro. In summary, we show that Vav1 acts in HSPCs to mitigate responses to pro-inflammatory cytokines present in the HM during engraftment following irradiation. Manipulating the gp130-Vav-Rac axis in HSPCs could represent a strategy to enhance engraftment of normal cells in conditioned recipients. Disclosures Williams: bluebird bio: Research Funding; Novartis: Consultancy; Orchard Therapeutics: Membership on an entity's Board of Directors or advisory committees.


2011 ◽  
Vol 208 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Matthew J. Christopher ◽  
Mahil Rao ◽  
Fulu Liu ◽  
Jill R. Woloszynek ◽  
Daniel C. Link

Granulocyte colony-stimulating factor (G-CSF), the prototypical mobilizing cytokine, induces hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow in a cell-nonautonomous fashion. This process is mediated, in part, through suppression of osteoblasts and disruption of CXCR4/CXCL12 signaling. The cellular targets of G-CSF that initiate the mobilization cascade have not been identified. We use mixed G-CSF receptor (G-CSFR)–deficient bone marrow chimeras to show that G-CSF–induced mobilization of HSPCs correlates poorly with the number of wild-type neutrophils. We generated transgenic mice in which expression of the G-CSFR is restricted to cells of the monocytic lineage. G-CSF–induced HSPC mobilization, osteoblast suppression, and inhibition of CXCL12 expression in the bone marrow of these transgenic mice are intact, demonstrating that G-CSFR signals in monocytic cells are sufficient to induce HSPC mobilization. Moreover, G-CSF treatment of wild-type mice is associated with marked loss of monocytic cells in the bone marrow. Finally, we show that bone marrow macrophages produce factors that support the growth and/or survival of osteoblasts in vitro. Together, these data suggest a model in which G-CSFR signals in bone marrow monocytic cells inhibit the production of trophic factors required for osteoblast lineage cell maintenance, ultimately leading to HSPC mobilization.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 358-358 ◽  
Author(s):  
Gang Huang ◽  
Pu Zhang ◽  
Steffen Koschmieder ◽  
Joseph D. Growney ◽  
D. Gary Gilliland ◽  
...  

Abstract PU.1 is expressed in hematopoietic stem cells (HSC), progenitors and differentiating blood cells except terminally differentiated T cells, erythrocytes and megakaryocytes. PU.1 is required for commitment of HSC to multiple lineages. PU.1 −/− embryos die perinatally and fail to generate myeloid and B cells. We previously reported that a DNase I hypersensitive site located 14 kb upstream of the PU.1 transcription start site (−14 DHS) confers myelomonocytic specific gene expression. Targeted deletion this DHS fragment in mice results in a decrease in PU.1 expression in bone marrow to 20% of wild type levels, subsequently leading to a profound decrease in macrophages and B cells. Within the DHS fragment is a “core” consisting of a distal (296bp) and a proximal (253bp) region, which are highly conserved among different species. The PU.1 promoter by itself cannot direct gene expression in vivo. However, −14 DHS confers to the promoter the ability to direct expression of a reporter gene in granulocytes, monocytes, and B-cells of transgenic mice. The proximal region can itself direct high-level gene expression. The proximal region contains 3 AML1 sites. These results, along with data indicating that PU.1 expression is selectively absent from Aml1 −/− embryos (Okada, et al, Oncogene. 1998), suggested that AML1 is likely to be upstream of PU.1. Electro-mobility gel shift assays and chromatin immunoprecipitation assays confirmed that AML1 binds to all 3 AML1 sites both in vitro and in vivo. Mutation of the 3 AML1 sites dramatically reduced the DHS activity of conferring gene expression. We used real time PCR to quantitatively measure PU.1 expression in both embryonic and adult hematopoiesis. We found that PU.1 expression was completely lost in the 9.5 dpc yolk sac, 10.5 dpc AGM and fetal liver of Aml1−/− embryos, suggesting that AML1 is required for PU.1 expression during embryonic hematopoiesis. To evaluate the effects of AML1 loss in the adult hematopoiesis, we employed a conditional Aml1 knockout allele in which LoxP flanked Aml1 (Aml1F/F) was excised by Mx1 promoter driven Cre expression following injection of pIpC. These mice show that Aml1 is not required for maturation of myeloid lineages in adult mice. However, these mice develop a mild myeloproliferative phenotype characterized by increasing in bone marrow and peripheral blood (PB) neutrophils, a 5 fold increasing in HSC, and 2–3 fold increasing myeloid progenitors. Spleen and liver contain infiltration by myeloid cells. These mice also display a dramatic decrease (~80%) in PB platelets and bone marrow megakaryocytes. Furthermore, there are significant blocks in lymphoid development, including reduced numbers of pre-B, pro-B and mature B cells, as well a block in T cell maturation at the DN2 (CD4−;CD8−;CD44+;CD25+) stage. We observed a 70% reduction of PU.1 expression in sorted HSC, progenitors, Gr1+/Mac1+ and B-cells from these mice relative to control mice. In contrast, upregulation of 3–5 fold expression in Ter119+, CD41+, and T cells in these mice compared to controls. Our data shows that PU.1 is a critical target gene of AML1, and AML1 regulates PU.1 in both positive and negative way. We are currently testing the ability of restoration of PU.1 expression to rescue specific defects in Aml1F/F; Tg (Mx1-cre) mice, as well as investigating the role of decreased PU.1 expression in human AML in which the function of AML1 is disrupted.


Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3258-3264 ◽  
Author(s):  
Dora Visnjic ◽  
Zana Kalajzic ◽  
David W. Rowe ◽  
Vedran Katavic ◽  
Joseph Lorenzo ◽  
...  

Abstract We previously reported a transgenic mouse model expressing herpesvirus thymidine kinase (TK) gene under the control of a 2.3-kilobase fragment of the rat collagen α1 type I promoter (Col2.3ΔTK). This construct confers lineage-specific expression in developing osteoblasts, allowing the conditional ablation of osteoblast lineage after treatment with ganciclovir (GCV). After GCV treatment these mice have profound alterations on bone formation leading to a progressive bone loss. In addition, treated animals also lose bone marrow cellularity. In this report we characterized hematopoietic parameters in GCV-treated Col2.3ΔTK mice, and we show that after treatment transgenic animals lose lymphoid, erythroid, and myeloid progenitors in the bone marrow, followed by decreases in the number of hematopoietic stem cells (HSCs). Together with the decrease in bone marrow hematopoiesis, active extramedullary hematopoiesis was observed in the spleen and liver, as measured by an increase in peripheral HSCs and active primary in vitro hematopoiesis. After withdrawal of GCV, osteoblasts reappeared in the bone compartment together with a recovery of medullary and decrease in extramedullary hematopoiesis. These observations directly demonstrate the role of osteoblasts in hematopoiesis and provide a model to study the interactions between the mesenchymal and hematopoietic compartments in the marrow. (Blood. 2004; 103:3258-3264)


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Theresa Weickert ◽  
Judith S. Hecker ◽  
Michèle C. Buck ◽  
Christina Schreck ◽  
Jennifer Rivière ◽  
...  

AbstractMyelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.


Blood ◽  
1997 ◽  
Vol 89 (11) ◽  
pp. 3919-3924 ◽  
Author(s):  
Jean C.Y. Wang ◽  
Monica Doedens ◽  
John E. Dick

Abstract We have previously reported the development of in vivo functional assays for primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of severe combined immunodeficient (SCID) and nonobese diabetic/SCID (NOD/SCID) mice following intravenous transplantation. Accumulated data from gene marking and cell purification experiments indicate that the engrafting cells (defined as SCID-repopulating cells or SRC) are biologically distinct from and more primitive than most cells that can be assayed in vitro. Here we demonstrate through limiting dilution analysis that the NOD/SCID xenotransplant model provides a quantitative assay for SRC. Using this assay, the frequency of SRC in cord blood (CB) was found to be 1 in 9.3 × 105 cells. This was significantly higher than the frequency of 1 SRC in 3.0 × 106 adult BM cells or 1 in 6.0 × 106 mobilized peripheral blood (PB) cells from normal donors. Mice transplanted with limiting numbers of SRC were engrafted with both lymphoid and multilineage myeloid human cells. This functional assay is currently the only available method for quantitative analysis of human hematopoietic cells with repopulating capacity. Both CB and mobilized PB are increasingly being used as alternative sources of hematopoietic stem cells in allogeneic transplantation. Thus, the findings reported here will have important clinical as well as biologic implications.


Blood ◽  
2011 ◽  
Vol 117 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Mamiko Noda ◽  
Yoshiki Omatsu ◽  
Tatsuki Sugiyama ◽  
Shinya Oishi ◽  
Nobutaka Fujii ◽  
...  

Abstract Natural killer (NK) cells are granular lymphocytes that are generated from hematopoietic stem cells and play vital roles in the innate immune response against tumors and viral infection. Generation of NK cells is known to require several cytokines, including interleukin-15 (IL-15) and Fms-like tyrosine kinase 3 ligand, but not IL-2 or IL-7. Here we investigated the in vivo role of CXC chemokine ligand-12 (CXCL12) and its primary receptor CXCR4 in NK-cell development. The numbers of NK cells appeared normal in embryos lacking CXCL12 or CXCR4; however, the numbers of functional NK cells were severely reduced in the bone marrow, spleen, and peripheral blood from adult CXCR4 conditionally deficient mice compared with control animals, probably resulting from cell-intrinsic CXCR4 deficiency. In culture, CXCL12 enhanced the generation of NK cells from lymphoid-primed multipotent progenitors and immature NK cells. In the bone marrow, expression of IL-15 mRNA was considerably higher in CXCL12-abundant reticular (CAR) cells than in other marrow cells, and most NK cells were in contact with the processes of CAR cells. Thus, CXCL12-CXCR4 chemokine signaling is essential for NK-cell development in adults, and CAR cells might function as a niche for NK cells in bone marrow.


Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


Blood ◽  
2007 ◽  
Vol 110 (7) ◽  
pp. 2276-2285 ◽  
Author(s):  
Maria De La Luz Sierra ◽  
Paola Gasperini ◽  
Peter J. McCormick ◽  
Jinfang Zhu ◽  
Giovanna Tosato

The mechanisms underlying granulocyte-colony stimulating factor (G-CSF)–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood remain elusive. We provide evidence that the transcriptional repressor growth factor independence-1 (Gfi-1) is involved in G-CSF–induced mobilization of granulocytic lineage cells from the bone marrow to the peripheral blood. We show that in vitro and in vivo G-CSF promotes expression of Gfi-1 and down-regulates expression of CXCR4, a chemokine receptor essential for the retention of hematopoietic stem cells and granulocytic cells in the bone marrow. Gfi-1 binds to DNA sequences upstream of the CXCR4 gene and represses CXCR4 expression in myeloid lineage cells. As a consequence, myeloid cell responses to the CXCR4 unique ligand SDF-1 are reduced. Thus, Gfi-1 not only regulates hematopoietic stem cell function and myeloid cell development but also probably promotes the release of granulocytic lineage cells from the bone marrow to the peripheral blood by reducing CXCR4 expression and function.


Sign in / Sign up

Export Citation Format

Share Document