scholarly journals Polymerisation of fibrin αC-domains promotes endothelial cell migration and proliferation

2014 ◽  
Vol 112 (12) ◽  
pp. 1244-1251 ◽  
Author(s):  
Sergiy Yakovlev ◽  
Irina Mikhailenko ◽  
Galina Tsurupa ◽  
Alexey Belkin ◽  
Leonid Medved

SummaryUpon conversion of fibrinogen into fibrin, fibrinogen αC-domains containing the RGD recognition motif form ordered αC polymers. Our previous study revealed that polymerisation of these domains promotes integrin-dependent adhesion and spreading of endothelial cells, as well as integrin-mediated activation of the FAK and ERK1/2 signalling pathways. The major goal of this study was to test the impact of αC-domain polymerisation on endothelial cell migration and proliferation during wound healing, and to clarify the mechanism underlying superior activity of αC polymers toward endothelial cells. In an in vitro wound healing assay, confluent endothelial cell monolayers on tissue culture plates coated with the αC monomer or αC polymers were wounded by scratching and wound closure was monitored by timelapse videomicroscopy. Although the plates were coated with equal amounts of αC species, as confirmed by ELISA, wound closure by the cells occurred much faster on αC polymers, indicating that αC-domain polymerisation promotes cell migration and proliferation. In agreement, endothelial cell proliferation was also more efficient on αC polymers, as revealed by cell proliferation assay. Wound closure on both types of substrates was equally inhibited by the integrin-blocking GRGDSP peptide and a specific antagonist of the ERK1/2 signalling pathway. In contrast, blocking the FAK signaling pathway by a specific antagonist decreased wound closure only on αC polymers. These results indicate that polymerisation of the αC-domains enhances integrin-dependent endothelial cell migration and proliferation mainly through the FAK signalling pathway. Furthermore, clustering of integrin-binding RGD motifs in αC polymers is the major mechanism triggering these events.

2019 ◽  
Vol 317 (2) ◽  
pp. C270-C276 ◽  
Author(s):  
Jessica Morand ◽  
Anne Briançon-Marjollet ◽  
Emeline Lemarie ◽  
Brigitte Gonthier ◽  
Josiane Arnaud ◽  
...  

Zinc is involved in the expression and function of various transcription factors, including the hypoxia-inducible factor-1 (HIF-1). HIF-1 and its target gene endothelin-1 (ET-1) are activated by intermittent hypoxia (IH), one of the main consequences of obstructive sleep apnea (OSA), and both play a key role in the cardiovascular consequences of IH. Because OSA and IH are associated with zinc deficiency, we investigated the effect of zinc deficiency caused by chelation on the HIF-1/ET-1 pathway and its functional consequences in endothelial cells. Primary human microvascular endothelial cells (HMVEC) were incubated with submicromolar doses of the zinc-specific membrane-permeable chelator N, N, N′, N′-tetrakis(2-pyridylmethyl)-ethylene diamine (TPEN, 0.5 µM) or ET-1 (0.01 µM) with or without bosentan, a dual ET-1-receptor antagonist. HIF-1α expression was silenced by transfection with specific siRNA. Nuclear HIF-1 content was assessed by immunofluorescence microscopy and Western blot. Migratory capacity of HMVEC was evaluated with a wound-healing scratch assay. Zinc chelation by TPEN exposure induced the translocation of the cytosolic HIF-1α subunit of HIF-1 to the nucleus as well as an HIF-1-mediated ET-1 secretion by HMVEC. Incubation with either TPEN or ET-1 increased endothelial wound-healing capacity. Both HIF-1α silencing or bosentan abolished this effect. Altogether, these results suggest that zinc deficiency upregulates ET-1 signaling through HIF-1 activation and stimulates endothelial cell migration, suggesting an important role of zinc in the vascular consequences of IH and OSA mediated by HIF-1-ET- signaling.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1145-1145
Author(s):  
Manfai Lee ◽  
Jonathan Baza ◽  
George M. Rodgers

Abstract Abstract 1145 Severe plasma ADAMTS13 deficiency results in the clinical disorder thrombotic thrombocytopenic purpura. However, other potential pathophysiological roles of ADAMTS13 in endothelial cell biology remain unexplored. To assess the possible role of ADAMTS13 in angiogenesis, cell proliferation and migration of human umbilical vein endothelial cells (HUVEC) were studied in vitro. ADAMTS13 was found to be a highly potent chemoattractant, and additionally was capable of neutralizing VEGF activity in two angiogenesis assays-cell proliferation and cell migration. In the Boyden chamber cell migration assay, treatment of endothelial cells with exogenous recombinant ADAMTS13 promoted cell migration in a dose-dependent manner, with 1 ng/mL increasing cell migration across a gelatinized polycarbonate membrane by 14-fold. In the same model, 5 ng/mL VEGF165 (molar ratio of ADAMTS13:VEGF165 = 1/19) only increased cell migration by 7 fold. A steady decrease in endothelial cell migration was observed when the concentration of ADAMTS13 exceeded 1 ng/mL (Figure 1). Coincubation of 30 ng/mL ADAMTS13 with 6.16 ng/mL VEGF165 (molar ratio of ADAMTS13/VEGF165 = 1.3/1) inhibited endothelial cell migration by 45% compared to VEGF alone (Figure 2). A second model using an in vitro scratch-wound assay confirmed the Boyden chamber data. Substitution of ADAMTS13 with ADAM17, an analog of ADAMTS13 without the thrombospondin domain reversed the inhibition of VEGF-mediated cell migration, suggesting that the thrombospondin domain of ADAMTS13 is responsible for the inhibitory interaction with VEGF165. This finding was in agreement with our previously published co-immunoprecipitation assay data (Blood 2010, 116, 4307). Similar patterns of inhibition were observed with VEGF121 and VEGF189, indicating that other isoforms of VEGF may interact with the TSP domain of ADAMTS13. Using a manual proliferation assay method, HUVEC treated with 30 ng/mL ADAMTS13 and 6.16 ng/mL VEGF165 proliferated 40% slower than the control treated with VEGF alone. Combined with our findings on the inhibition of endothelial cell-tube formation in a Matrigel assay with ADAMTS13 and VEGF165 previously reported, our cumulative data suggest that 1) ADAMTS13 promotes angiogenesis by increasing cell migration and 2) ADAMTS13 can modulate VEGF-mediated angiogenic activities. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Martin Lange ◽  
Elvin Leonard ◽  
Nils Ohnesorge ◽  
Dennis Hoffmann ◽  
Susana F. Rocha ◽  
...  

SUMMARYThe formation of appropriately patterned blood vessel networks requires endothelial cell migration and proliferation. Signaling through the Vascular Endothelial Growth Factor A (VEGFA) pathway is instrumental in coordinating these processes. mRNA splicing generates short (diffusible) and long (extracellular matrix bound) Vegfa isoforms. The differences between these isoforms in controlling cellular functions are not understood. In zebrafish, vegfaa generates short and long isoforms, while vegfab only generates long isoforms. We found that mutations in vegfaa affected endothelial cell migration and proliferation. Surprisingly, mutations in vegfab specifically reduced endothelial cell proliferation. Analysis of downstream signaling revealed no change in MAPK (ERK) activation, while inhibiting PI3 kinase signaling phenocopied vegfab mutants. The cell cycle inhibitor cdkn1a/p21 was upregulated in vegfab deficient embryos. Accordingly, reducing cdkn1a/p21 restored endothelial cell proliferation. Together, these results suggest that extracellular matrix bound Vegfa acts through PI3K signaling to specifically control endothelial cell proliferation during angiogenesis independently of MAPK (ERK) regulation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1142-1142 ◽  
Author(s):  
Gregory N Adams ◽  
Gretchen LaRusch ◽  
Alvin H. Schmaier

Abstract Abstract 1142 Background. The S28 serine protease, prolylcarboxypeptidase (PRCP) degrades bradykinin, angiotensin II, alpha melanocyte stimulating hormone and actives plasma prekallikrein. Additionally our studies indicate that PRCP depletions in vivo and in cultured cells are associated with increased reactive oxygen species (ROS) and loss of constitutive anticoagulant function of endothelium (Blood 2011; 117:3929). PRCP-depleted mice are prothrombotic and hypertensive. We observed that PRCP-depleted cells in culture have reduced growth. We posited that PRCP promotes vascular health by influencing cell proliferation, angiogenesis, and wound repair. Methods and Results. Initial investigations determined that PRCP influences vascular endothelial cell proliferation. Bovine aortic endothelial cells (BAEC) were depleted of PRCP by siRNA knockdown resulting in 5% residual mRNA. After transfecting equal numbers of BAEC, at 24 h, the PRCP siRNA transfected cells have reduced proliferation, −18±3 change in cells/high power field (HPF) (mean±SEM), compared to the sham transfected cells, +23±8 cells/HPF, p<0.05. Additionally, PRCP siRNA-treated BAEC demonstrate less proliferation as measured by the MTS assay (Promega) (0.23±0.01 OD490 nm in PRCP-depleted cells vs 0.31±0.01 OD490 nm in sham transfected cells, p<0.02). Alternatively, when BAEC are transfected with full-length PRCP cDNA, at 24 h there is increased proliferation, +58±9 cells/HPF, vs +31±2 of sham-transfected cells, p<0.05. On a BAEC scratch assay, the degree of endothelial cell migration at 5 h in PRCP siRNA-knocked down cells is only 69% of that seen with sham-transfected cells (38±4% scratch coverage in PRCP knockdown BAEC vs 55±5% in sham knockdowns). These combined studies indicate that the content of PRCP in endothelial cells directly correlates with the degree of cell migration and proliferation. Studies next determined the influence of PRCP on angiogenesis. PRCP-depleted mice (PRCPgt/gt) have reduced new vessel growth into sub-cutaneous matrigel plugs containing FGF and VEGF. Matrigel plugs from the PRCP gt/gt mice show 3.5±0.5 Hgb mg/dL/mg-matrigel vs 6.7±1.2 Hgb mg/dL/mg matrigel in plugs in littermate wild type (WT) mice (p<0.03). When sections from the matrigel plugs are stained for the vascular marker CD31, the percent area of new vessels in the PRCPgt/gt (5.5±0.9%), as determined by ImageJ analysis, is significantly less (p<0.04) than that seen (11.9±2.1%) in WT plugs. These data indicate that host PRCP levels influence induced angiogenesis in the whole animal. Additional studies examined if PRCPgt/gt have reduced wound repair angiogenesis. Punch biopsies (5 mm) were performed on PRCPgt/gt. At day 7, no wound healed in PRCPgt/gt but 5/10 wounds healed in WT. The mean size of the PRCPgt/gt wounds is 5.5±1.1 mm2 vs 1.4±0.7 mm2 for WT, p<0.05. Also, at day 7, the wounds of PRCPgt/gt have 11.6±1.0 % area of CD31 stained vessels vs 15.0±1.0 % area of CD31 stained vessels in control wounds, p<0.03. Since there is no difference in the number of vessels in unwounded skin biopsies in PRCPgt/gt vs WT, the reduced vessel growth and delayed wound closure indicates that PRCPgt/gt mice have reduced repair angiogenesis. Conclusions. These combined studies indicate that PRCP levels in endothelial cells influence cell proliferation and growth. In the whole animal this cell biology observation translates into less induced and wound repair angiogenesis. Since PRCP-depleted endothelial cells and vessels from PRCPgt/gt have increased ROS with loss of anticoagulant properties and PRCPgt/gt have higher thrombosis risk, the finding that PRCP also influences endothelial cell growth and angiogenesis suggests that PRCP promotes vascular health and injury repair. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 278 (3) ◽  
pp. C612-C618 ◽  
Author(s):  
Hsinyu Lee ◽  
Edward J. Goetzl ◽  
Songzhu An

Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are potent lipid growth factors with similar abilities to stimulate cytoskeleton-based cellular functions. Their effects are mediated by a subfamily of G protein-coupled receptors (GPCRs) encoded by endothelial differentiation genes ( edgs). We hypothesize that large quantities of LPA and S1P generated by activated platelets may influence endothelial cell functions. Using an in vitro wound healing assay, we observed that LPA and S1P stimulated closure of wounded monolayers of human umbilical vein endothelial cells and adult bovine aortic endothelial cells, which express LPA receptor Edg2, and S1P receptors Edg1 and Edg3. The two major components of wound healing, cell migration and proliferation, were stimulated individually by both lipids. LPA and S1P also stimulated intracellular Ca2+mobilization and mitogen-activated protein kinase (MAPK) phosphorylation. Pertussis toxin partially blocked the effects of both lipids on endothelial cell migration, MAPK phosphorylation, and Ca2+ mobilization, implicating Gi/o-coupled Edg receptor signaling in endothelial cells. LPA and S1P did not cross-desensitize each other in Ca2+ responses, suggesting involvement of distinct receptors. Thus LPA and S1P affect endothelial cell functions through signaling pathways activated by distinct GPCRs and may contribute to the healing of wounded vasculatures.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1669 ◽  
Author(s):  
Zhiping Yan ◽  
Jingxia Liu ◽  
Linshen Xie ◽  
Xiaoheng Liu ◽  
Ye Zeng

CXCL8 (Interleukin-8, IL-8) plays an important role in angiogenesis and wound healing by prompting endothelial cell migration. It has been suggested that heparan sulfate (HS) could provide binding sites on endothelial cells to retain and activate highly diffusible cytokines and inflammatory chemokines. In the present study, we aimed to test the hypothesis that HS is essential for enhancement of endothelial cell migration by CXCL8, and to explore the underlying mechanism by detecting the changes in expression and activity of Rho GTPases and in the organization of actin cytoskeleton after enzymatic removal of HS on human umbilical vein endothelial cells (HUVECs) by using heparinase III. Our results revealed that the wound healing induced by CXCL8 was greatly attenuated by removal of HS. The CXCL8-upregulated Rho GTPases including Cdc42, Rac1, and RhoA, and CXCL8-increased Rac1/Rho activity were suppressed by removal of HS. The polymerization and polarization of actin cytoskeleton, and the increasing of stress fibers induced by CXCL8 were also abolished by heparinase III. Taken together, our results demonstrated an essential role of HS in mediating CXCL8-induced endothelial cell migration, and highlighted the biological importance of the interaction between CXCL8 and heparan sulfate in wound healing.


2002 ◽  
Vol 115 (9) ◽  
pp. 1837-1846 ◽  
Author(s):  
Sandra van Wetering ◽  
Jaap D. van Buul ◽  
Safira Quik ◽  
Frederik P. J. Mul ◽  
Eloise C. Anthony ◽  
...  

The integrity of the endothelium is dependent on cell-cell adhesion, which is mediated by vascular-endothelial (VE)-cadherin. Proper VE-cadherin-mediated homotypic adhesion is, in turn, dependent on the connection between VE-cadherin and the cortical actin cytoskeleton. Rho-like small GTPases are key molecular switches that control cytoskeletal dynamics and cadherin function in epithelial as well as endothelial cells. We show here that a cell-penetrating, constitutively active form of Rac (Tat-RacV12) induces a rapid loss of VE-cadherin-mediated cell-cell adhesion in endothelial cells from primary human umbilical veins (pHUVEC). This effect is accompanied by the formation of actin stress fibers and is dependent on Rho activity. However,transduction of pHUVEC with Tat-RhoV14, which induces pronounced stress fiber and focal adhesion formation, did not result in a redistribution of VE-cadherin or an overall loss of cell-cell adhesion. In line with this observation, endothelial permeability was more efficiently increased by Tat-RacV12 than by Tat-RhoV14. The loss of cell-cell adhesion, which is induced by Tat-RacV12, occurred in parallel to and was dependent upon the intracellular production of reactive oxygen species (ROS). Moreover, Tat-RacV12 induced an increase in tyrosine phosphorylation of a component the VE-cadherin-catenin complex, which was identified as α-catenin. The functional relevance of this signaling pathway was further underscored by the observation that endothelial cell migration, which requires a transient reduction of cell-cell adhesion, was blocked when signaling through ROS was inhibited. In conclusion, Rac-mediated production of ROS represents a previously unrecognized means of regulating VE-cadherin function and may play an important role in the (patho)physiology associated with inflammation and endothelial damage as well as with endothelial cell migration and angiogenesis.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Luke Hoeppner ◽  
Sutapa Sinha ◽  
Ying Wang ◽  
Resham Bhattacharya ◽  
Shamit Dutta ◽  
...  

Vascular permeability factor/vascular endothelial growth factor A (VEGF) is a central regulator of angiogenesis and potently promotes vascular permeability. VEGF plays a key role in the pathologies of heart disease, stroke, and cancer. Therefore, understanding the molecular regulation of VEGF signaling is an important pursuit. Rho GTPase proteins play various roles in vasculogenesis and angiogenesis. While the functions of RhoA and RhoB in these processes have been well defined, little is known about the role of RhoC in VEGF-mediated signaling in endothelial cells and vascular development. Here, we describe how RhoC modulates VEGF signaling to regulate endothelial cell proliferation, migration and permeability. We found VEGF stimulation activates RhoC in human umbilical vein endothelial cells (HUVECs), which was completely blocked after VEGF receptor 2 (VEGFR-2) knockdown indicating that VEGF activates RhoC through VEGFR-2 signaling. Interestingly, RhoC knockdown delayed the degradation of VEGFR-2 compared to control siRNA treated HUVECs, thus implicating RhoC in VEGFR-2 trafficking. In light of our results suggesting VEGF activates RhoC through VEGFR-2, we sought to determine whether RhoC regulates vascular permeability through the VEGFR-2/phospholipase Cγ (PLCγ) /Ca 2+ /eNOS cascade. We found RhoC knockdown in VEGF-stimulated HUVECs significantly increased PLC-γ1 phosphorylation at tyrosine 783, promoted basal and VEGF-stimulated eNOS phophorylation at serine 1177, and increased calcium flux compared with control siRNA transfected HUVECs. Taken together, our findings suggest RhoC negatively regulates VEGF-induced vascular permeability. We confirmed this finding through a VEGF-inducible zebrafish model of vascular permeability by observing significantly greater vascular permeability in RhoC morpholino (MO)-injected zebrafish than control MO-injected zebrafish. Furthermore, we showed that RhoC promotes endothelial cell proliferation and negatively regulates endothelial cell migration. Our data suggests a scenario in which RhoC promotes proliferation by upregulating -catenin in a Wnt signaling-independent manner, which in turn, promotes Cyclin D1 expression and subsequently drives cell cycle progression.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256646
Author(s):  
Harsha Nagar ◽  
Seonhee Kim ◽  
Ikjun Lee ◽  
Su-Jeong Choi ◽  
Shuyu Piao ◽  
...  

Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.


2016 ◽  
Vol 105 ◽  
pp. 103-108 ◽  
Author(s):  
Jing Jia ◽  
Taiyang Ye ◽  
Pengfei Cui ◽  
Qian Hua ◽  
Huiyan Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document