Abstract 203: Regulation of Lipid Phosphate Phosphatase 3 in Cardiac Ischemia/Reperfusion Injury and Hypertrophy

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Mini Chandra ◽  
Jonathan Fox ◽  
Wayne Orr ◽  
Christopher Kevil ◽  
Sumitra Miriyala ◽  
...  

Generation of reactive oxygen species (ROS) has been implicated in myocardial infarction (MI), stroke and sudden cardiac death. Mitochondrial respiration is a major source of ROS production and lipids regulate mitochondrial oxidative metabolism and homeostasis through effects on mitochondrial fusion and fission and on the activity of mitochondrial membrane proteins. Lipid phosphate phosphatases (LPPs) control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. These include phosphatidic acid (PA), and lysophosphatidic acid (LPA). Oxidative stress was identified to transactivate microRNA-92a, which is a negative regulator of LPP3. We found that LPP3 expression was markedly down regulated in ischemic regions after ischemia/reperfusion (I/R) injury. We observed a similar trend in the myocardium from patients with acute MI at 24h. Our in vitro studies indicate that overexpression of LPP3 protects the cardiomyocyte against ROS-induced cardiac injury and reduction of LPP3 by conditional specific cardiac knockout of the LPP3 gene in mice increases cardiac dysfunction and mortality. These mice are viable and fertile but showed increased mortality ~8 months (Fig1). Blood pressure was similar in LPP3 fl/fl (96 ± 9 mmHg; n = 19) and Myh6- LPP3 Δ mice (92 ± 7 mmHg; n = 19), although heart rates were significantly higher in Myh6- LPP3 Δ 3 month old mice (642 ± 21 bpm, compared to LPP3 fl/fl with 600± 17 bpm; P<0.001). Knockdown of LPP3 enhanced cardiomyocyte hypertrophy induced by LPA based on analysis of sarcomere organization, cell surface area, levels of fetal genes ANP and BNP, and ANF release from nuclei, which are hallmarks of cardiomyocyte hypertrophy, indicating that LPP3 negatively regulates cardiomyocyte hypertrophy induced by LPA.

2013 ◽  
Vol 305 (4) ◽  
pp. H446-H458 ◽  
Author(s):  
Helen E. Collins ◽  
Xiaoyuan Zhu-Mauldin ◽  
Richard B. Marchase ◽  
John C. Chatham

Store-operated Ca2+ entry (SOCE) is critical for Ca2+ signaling in nonexcitable cells; however, its role in the regulation of cardiomyocyte Ca2+ homeostasis has only recently been investigated. The increased understanding of the role of stromal interaction molecule 1 (STIM1) in regulating SOCE combined with recent studies demonstrating the presence of STIM1 in cardiomyocytes provides support that this pathway co-exists in the heart with the more widely recognized Ca2+ handling pathways associated with excitation-contraction coupling. There is now substantial evidence that STIM1-mediated SOCE plays a key role in mediating cardiomyocyte hypertrophy, both in vitro and in vivo, and there is growing support for the contribution of SOCE to Ca2+ overload associated with ischemia/reperfusion injury. Here, we provide an overview of our current understanding of the molecular regulation of SOCE and discuss the evidence supporting the role of STIM1/Orai1-mediated SOCE in regulating cardiomyocyte function.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Manikandan Panchatcharam ◽  
Mini Chandra ◽  
Jonathan Fox ◽  
Shenuarin Bhuiyan ◽  
Wayne Orr ◽  
...  

Lipid phosphate phosphatases-3 control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. Oxidative stress transactivates microRNA-92a, which is a negative regulator of LPP3. We found that LPP3 expression was markedly downregulated in ischemic regions after ischemia/reperfusion (I/R) injury. We observed a similar trend in the myocardium from patients samples with acute MI at 24h. Our in vitro studies indicate that overexpression of LPP3 protects the cardiomyocyte against reactive oxygen species (ROS)-induced cardiac injury and knockout of LPP3 gene in the myocardium increases cardiac dysfunction and mortality. Using XF24 Seahorse analyzer we determined the effect of ROS on respiration in pluripotent stem cell-derived cardiomyocytes (iPSC-CM). Adding Phorbol 12-myristate 13-acetate (PMA) to these cells immediately increased oxygen consumption as compared to LPP3 overexpressed cells. This apparent increase in respiration was reversible by oligomycin, which blocks ATP synthase. The rate of oxygen consumption per cell was significantly lower in stimulated compared to LPP3 overexpressed iPSC-CM. The most noticeable difference in the O 2 consumption was found in the presence of carbonilcyanide p-trifluromethoxyphenylhydrazone (FCCP). FCCP is an inner membrane pore opener which resets the proton gradient between mitochondrial matrix and interspace, resulting in continuous transport of protons and consuming O 2 at the maximum potential. Remarkably, while the FCCP treatment increased O 2 consumption in LPP3 overexpressed cells (P<0.05), the treatment showed no effect on the O 2 consumption in the PMA stimulated alone. The result indicated that the low basal oxidative phosphorylation activity in stimulated cells was due to unusually low oxidative phosphorylation potential. To explore the free radical regulation of LPP3 overexpressed cells, superoxide anion was measured using dihydroethidium, a fluorescent cholesterol analog. The levels of superoxide radicals in PMA treated cells were consistently and significantly higher than the levels in LPP3 overexpressed cells (P<0.05). In turn, the radicals can be removed by adding MitoTEMPO (a specific scavenger of mitochondrial superoxide).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Zhang ◽  
Xiaofang Zhang ◽  
Benzhi Cai ◽  
Ying Li ◽  
Yuan Jiang ◽  
...  

AbstractCardiac ischemia–reperfusion (I/R) injury is a pathological process resulting in cardiomyocyte death. The present study aims to evaluate the role of the long noncoding RNA Cardiac Injury-Related Bclaf1-Inhibiting LncRNA (lncCIRBIL) on cardiac I/R injury and delineate its mechanism of action. The level of lncCIRBIL is reduced in I/R hearts. Cardiomyocyte-specific transgenic overexpression of lncCIRBIL reduces infarct area following I/R injury. Knockout of lncCIRBIL in mice exacerbates cardiac I/R injury. Qualitatively, the same results are observed in vitro. LncCIRBIL directly binds to BCL2-associated transcription factor 1 (Bclaf1), to inhibit its nuclear translocation. Cardiomyocyte-specific transgenic overexpression of Bclaf1 worsens, while partial knockout of Bclaf1 mitigates cardiac I/R injury. Meanwhile, partial knockout of Bclaf1 abrogates the detrimental effects of lncCIRBIL knockout on cardiac I/R injury. Collectively, the protective effect of lncCIRBIL on I/R injury is accomplished by inhibiting the nuclear translocation of Bclaf1. LncCIRBIL and Bclaf1 are potential therapeutic targets for ischemic cardiac disease.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Manikandan Panchatcharam ◽  
Benjamin Maxey ◽  
Alicia Day ◽  
Diana Escalante-Alcalde ◽  
Sumitra Miriyala

Lysophosphatidic acid (LPA) is a bioactive lipid mediator that is found in abundance in atherosclerotic plaques and whose production is accelerated by activated platelets. Two fold rise in serum LPA concentration in acute myocardial infarct patients (6.4±1.3 micro mol/L vs 2.5 ± 1.1 micro mol/L, P = 0.0001) and its effect to cause cardiomyocyte hypertrophy suggests, a critical role for LPA regulation in the myocardium. The actions of local and circulating LPA may be terminated by enzymatic dephosphorylation of the lipid by a family of hexahelical membrane spanning proteins, termed lipid phosphate phosphatases (LPP). Of the three LPP enzymes with preference for LPA, LPP3 appears the most likely to play a biologic role in regulating LPA levels, and deficiency of LPP3 results in embyronic lethality in mice due to vascular and neural tube defects. We have generated mice that specifically lack LPP3 in cardiomyocytes. These mice are viable and fertile but showed increased mortality ~8 months (Fig1). Blood pressure was similar in Ppap2b fl/fl (96 ± 9 mmHg; n = 19) and Myh6-Ppap2b Δ mice (92 ± 7 mmHg; n = 19), although heart rates were significantly higher in Myh6-Ppap2b Δ 3 month old mice (642 ± 21 bpm, compared to Ppap2b fl/fl with 600± 17 bpm; P<0.001). Knockdown of LPP3 enhanced cardiomyocyte hypertrophy induced by LPA based on analysis of sarcomere organization, cell surface area, levels of fetal genes ANP and BNP, and ANF release from nuclei, which are hallmarks of cardiomyocyte hypertrophy, indicating that LPP3 negatively regulates cardiomyocyte hypertrophy induced by LPA.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Anthony R. Anzell ◽  
Garrett M. Fogo ◽  
Zoya Gurm ◽  
Sarita Raghunayakula ◽  
Joseph M. Wider ◽  
...  

AbstractMitochondrial dynamics and mitophagy are constitutive and complex systems that ensure a healthy mitochondrial network through the segregation and subsequent degradation of damaged mitochondria. Disruption of these systems can lead to mitochondrial dysfunction and has been established as a central mechanism of ischemia/reperfusion (I/R) injury. Emerging evidence suggests that mitochondrial dynamics and mitophagy are integrated systems; however, the role of this relationship in the context of I/R injury remains unclear. To investigate this concept, we utilized primary cortical neurons isolated from the novel dual-reporter mitochondrial quality control knockin mice (C57BL/6-Gt(ROSA)26Sortm1(CAG-mCherry/GFP)Ganl/J) with conditional knockout (KO) of Drp1 to investigate changes in mitochondrial dynamics and mitophagic flux during in vitro I/R injury. Mitochondrial dynamics was quantitatively measured in an unbiased manner using a machine learning mitochondrial morphology classification system, which consisted of four different classifications: network, unbranched, swollen, and punctate. Evaluation of mitochondrial morphology and mitophagic flux in primary neurons exposed to oxygen-glucose deprivation (OGD) and reoxygenation (OGD/R) revealed extensive mitochondrial fragmentation and swelling, together with a significant upregulation in mitophagic flux. Furthermore, the primary morphology of mitochondria undergoing mitophagy was classified as punctate. Colocalization using immunofluorescence as well as western blot analysis revealed that the PINK1/Parkin pathway of mitophagy was activated following OGD/R. Conditional KO of Drp1 prevented mitochondrial fragmentation and swelling following OGD/R but did not alter mitophagic flux. These data provide novel evidence that Drp1 plays a causal role in the progression of I/R injury, but mitophagy does not require Drp1-mediated mitochondrial fission.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ying Dong Du ◽  
Wen Yuan Guo ◽  
Cong Hui Han ◽  
Ying Wang ◽  
Xiao Song Chen ◽  
...  

AbstractDespite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during hepatic ischemia–reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased during HIRI. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation. Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during HIRI and provided valuable insights into the therapeutic mechanisms of FTO.


2021 ◽  
Vol 22 (15) ◽  
pp. 7774
Author(s):  
Sevil Korkmaz-Icöz ◽  
Cenk Kocer ◽  
Alex A. Sayour ◽  
Patricia Kraft ◽  
Mona I. Benker ◽  
...  

Vascular ischemia/reperfusion injury (IRI) contributes to graft failure and adverse clinical outcomes following coronary artery bypass grafting. Sodium-glucose-cotransporter (SGLT)-2-inhibitors have been shown to protect against myocardial IRI, irrespective of diabetes. We hypothesized that adding canagliflozin (CANA) (an SGLT-2-inhibitor) to saline protects vascular grafts from IRI. Aortic rings from non-diabetic rats were isolated and immediately mounted in organ bath chambers (control, n = 9–10 rats) or underwent cold ischemic preservation in saline, supplemented either with a DMSO vehicle (IR, n = 8–10 rats) or 50µM CANA (IR + CANA, n = 9–11 rats). Vascular function was measured, the expression of 88 genes using PCR-array was analyzed, and feature selection using machine learning was applied. Impaired maximal vasorelaxation to acetylcholine in the IR-group compared to controls was significantly ameliorated by CANA (IR 31.7 ± 3.2% vs. IR + CANA 51.9 ± 2.5%, p < 0.05). IR altered the expression of 17 genes. Ccl2, Ccl3, Ccl4, CxCr4, Fos, Icam1, Il10, Il1a and Il1b have been found to have the highest interaction. Compared to controls, IR significantly upregulated the mRNA expressions of Il1a and Il6, which were reduced by 1.5- and 1.75-fold with CANA, respectively. CANA significantly prevented the upregulation of Cd40, downregulated NoxO1 gene expression, decreased ICAM-1 and nitrotyrosine, and increased PECAM-1 immunoreactivity. CANA alleviates endothelial dysfunction following IRI.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Chong Huang ◽  
Yan Chen ◽  
Bin Lai ◽  
Yan-Xia Chen ◽  
Cheng-Yun Xu ◽  
...  

Abstract Background Acute kidney injury (AKI) is a major kidney disease with poor clinical outcome. SP1, a well-known transcription factor, plays a critical role in AKI and subsequent kidney repair through the regulation of various cell biologic processes. However, the underlying mechanism of SP1 in these pathological processes remain largely unknown. Methods An in vitro HK-2 cells with anoxia-reoxygenation injury model (In vitro simulated ischemic injury disease) and an in vivo rat renal ischemia-reperfusion injury model were used in this study. The expression levels of SP1, miR-205 and PTEN were detected by RT-qPCR, and the protein expression levels of SP1, p62, PTEN, AKT, p-AKT, LC3II, LC3I and Beclin-1 were assayed by western blot. Cell proliferation was assessed by MTT assay, and the cell apoptosis was detected by flow cytometry. The secretions of IL-6 and TNF-α were detected by ELISA. The targeted relationship between miR-205 and PTEN was confirmed by dual luciferase report assay. The expression and positioning of LC-3 were observed by immunofluorescence staining. TUNEL staining was used to detect cell apoptosis and immunohistochemical analysis was used to evaluate the expression of SP1 in renal tissue after ischemia-reperfusion injury in rats. Results The expression of PTEN was upregulated while SP1 and miR-205 were downregulated in renal ischemia-reperfusion injury. Overexpression of SP1 protected renal tubule cell against injury induced by ischemia-reperfusion via miR-205/PTEN/Akt pathway mediated autophagy. Overexpression of SP1 attenuated renal ischemia-reperfusion injury in rats. Conclusions SP1 overexpression restored autophagy to alleviate acute renal injury induced by ischemia-reperfusion through the miR-205/PTEN/Akt pathway.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Jian-Ping Zhang ◽  
Wei-Jing Zhang ◽  
Miao Yang ◽  
Hua Fang

Abstract Background Propofol, an intravenous anesthetic, was proven to protect against lung ischemia/reperfusion (I/R) injury. However, the detailed mechanism of Propofol in lung I/R injury is still elusive. This study was designed to explore the therapeutic effects of Propofol, both in vivo and in vitro, on lung I/R injury and the underlying mechanisms related to metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/microRNA-144 (miR-144)/glycogen synthase kinase-3β (GSK3β). Methods C57BL/6 mice were used to establish a lung I/R injury model while pulmonary microvascular endothelial cells (PMVECs) were constructed as hypoxia/reperfusion (H/R) cellular model, both of which were performed with Propofol treatment. Gain- or loss-of-function approaches were subsequently employed, followed by observation of cell apoptosis in lung tissues and evaluation of proliferative and apoptotic capabilities in H/R cells. Meanwhile, the inflammatory factors, autophagosomes, and autophagy-related proteins were measured. Results Our experimental data revealed that Propofol treatment could decrease the elevated expression of MALAT1 following I/R injury or H/R induction, indicating its protection against lung I/R injury. Additionally, overexpressing MALAT1 or GSK3β promoted the activation of autophagosomes, proinflammatory factor release, and cell apoptosis, suggesting that overexpressing MALAT1 or GSK3β may reverse the protective effects of Propofol against lung I/R injury. MALAT1 was identified to negatively regulate miR-144 to upregulate the GSK3β expression. Conclusion Overall, our study demonstrated that Propofol played a protective role in lung I/R injury by suppressing autophagy and decreasing release of inflammatory factors, with the possible involvement of the MALAT1/miR-144/GSK3β axis.


Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


Sign in / Sign up

Export Citation Format

Share Document