scholarly journals The long noncoding RNA lncCIRBIL disrupts the nuclear translocation of Bclaf1 alleviating cardiac ischemia–reperfusion injury

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Zhang ◽  
Xiaofang Zhang ◽  
Benzhi Cai ◽  
Ying Li ◽  
Yuan Jiang ◽  
...  

AbstractCardiac ischemia–reperfusion (I/R) injury is a pathological process resulting in cardiomyocyte death. The present study aims to evaluate the role of the long noncoding RNA Cardiac Injury-Related Bclaf1-Inhibiting LncRNA (lncCIRBIL) on cardiac I/R injury and delineate its mechanism of action. The level of lncCIRBIL is reduced in I/R hearts. Cardiomyocyte-specific transgenic overexpression of lncCIRBIL reduces infarct area following I/R injury. Knockout of lncCIRBIL in mice exacerbates cardiac I/R injury. Qualitatively, the same results are observed in vitro. LncCIRBIL directly binds to BCL2-associated transcription factor 1 (Bclaf1), to inhibit its nuclear translocation. Cardiomyocyte-specific transgenic overexpression of Bclaf1 worsens, while partial knockout of Bclaf1 mitigates cardiac I/R injury. Meanwhile, partial knockout of Bclaf1 abrogates the detrimental effects of lncCIRBIL knockout on cardiac I/R injury. Collectively, the protective effect of lncCIRBIL on I/R injury is accomplished by inhibiting the nuclear translocation of Bclaf1. LncCIRBIL and Bclaf1 are potential therapeutic targets for ischemic cardiac disease.

2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Liyuan Zou ◽  
Xiaokun Ma ◽  
Shuo Lin ◽  
Bingyuan Wu ◽  
Yang Chen ◽  
...  

Abstract Long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) plays an important role in protection of ischemia–reperfusion (I/R) injury in brain and liver. However, role of MEG3 in myocardial I/R injury remains unclear. Here, the role of MEG3 in protection of myocardial I/R injury and its association with microRNA-7-5p (miR-7-5p) was investigated using rat cardiac I/R model and myocardial I/R cell model. Our results showed that MEG3 was significantly up-regulated and miR-7-5p was significantly down-regulated after I/R. Following I/R, the levels of intact PARP and intact caspase-3 were reduced, while the cleaved fragments of PARP and caspase-3 were increased. TUNEL assay showed an increase in cardiomyocyte apoptosis after I/R. The levels of I/R-induced creatine kinase (CK) and lactate dehydrogenase (LDH) were inhibited by knockdown of MEG3 (siMEG3). SiMEG3 increased cell proliferation and inhibited cell apoptosis after I/R. In contrast, overexpression of MEG3 increased the I/R-induced CK and LDH activities and cell apoptosis and decreased cell proliferation. The dual-luciferase reporter system showed a direct binding of MEG3 to miR-7-5p. The level of miR-7-5p was negatively associated with the change in levels of MEG3 in H9c2 cells. The levels of intact RARP1 and caspase-3 were significantly increased by knockdown of MEG3. Co-transfection of miR-7-5p inhibitor with siMEG3 activates CK and LDH, significantly decreased cell proliferation, increased cell apoptosis, and decreased intact poly(ADP-ribose) polymerase 1 (PARP1) and caspase-3. In summary, down-regulation of MEG3 protects myocardial cells against I/R-induced apoptosis through miR-7-5p/PARP1 pathway, which might provide a new therapeutic target for treatment of myocardial I/R injury.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Dajun Liu ◽  
Ying Liu ◽  
Xiaotong Zheng ◽  
Naiquan Liu

AbstractIschemia–reperfusion injury (IRI)-induced acute kidney injury (AKI) is a life-threatening disease. The activation of mitophagy was previously identified to play an important role in IRI. Maternally expressed 3 (MEG3) can promote cerebral IRI and hepatic IRI. The present study was designed to study the role of MEG3 in renal IRI. Renal IRI mice models were established, and HK-2 cells were used to construct the in vitro models of IRI. Hematoxylin–eosin staining assay was applied to reveal IRI-triggered tubular injury. MitoTracker Green FM staining and an ALP kit were employed for detection of mitophagy. TdT-mediated dUTP-biotin nick-end labeling assay was used to reveal cell apoptosis. The results showed that renal cortex of IRI mice contained higher expression of MEG3 than that of sham mice. MEG3 expression was also elevated in HK-2 cells following IRI, suggesting that MEG3 might participate in the development of IRI. Moreover, downregulation of MEG3 inhibited the apoptosis of HK-2 cells after IRI. Mitophagy was activated by IRI, and the inhibition of MEG3 can restore mitophagy activity in IRI-treated HK-2 cells. Mechanistically, we found that MEG3 can bind with miR-145-5p in IRI-treated cells. In addition, rhotekin (RTKN) was verified to serve as a target of miR-145-5p. MEG3 upregulated RTKN expression by binding with miR-145-5p. Further, MEG3 activated the Wnt/β-catenin pathway by upregulation of RTKN. The downstream effector of Wnt/β-catenin pathway, c-MYC, served as the transcription factor to activate MEG3. In conclusion, the positive feedback loop of MEG3/miR-145-5p/RTKN/Wnt/β-catenin/c-MYC promotes renal IRI by activating mitophagy and inducing apoptosis, which might offer a new insight into the therapeutic methods for renal IRI in the future.


2021 ◽  
Author(s):  
Zhi Dong ◽  
Ling Deng ◽  
Yi Guo ◽  
Jingdong Liu ◽  
Sha Chen ◽  
...  

Abstract Increasing evidence suggests that long noncoding RNAs can exert neuroprotective effects in cerebral ischemia-reperfusion injury. Levels of the long noncoding RNA ANRIL (ANRIL) are reportedly altered in ischemic stroke (IS) patients, but its role in IS requires further clarification. This study was designed to explore the mechanistic function of ANRIL in IS. In vitro, HT22 cells was treated with an oxygen-glucose deprivation/reperfusion (OGD/R). In vivo, brain ischemia/reperfusion was induced by 60-minute transient middle cerebral artery occlusion/ reperfusion (MCAO/R) IS model in C57/BL6 mice. Additionally, cells were transfected with si-ANRIL, pcDNA3.1-ANRIL, pcDNA3.1-NF-κB, or appropriate negative controls, and si-ANRIL and pcDNA3.1-NF-κB were administered into the lateral ventricles in MCAO/R model mice. Cell viability and apoptosis were detected via MTT and flow cytometry assays. mRNA and protein expression of NF-κB were detected via qRT-PCR and Western blotting. IL-1β, IL-6, TNF-a, and iNOS levels were detected via ELISA. In addition, infarcted area and neuronal injury were evaluated via TTC, Nissl, and immunofluorescent staining. We found that ANRIL knockdown increased cell viability and reduced apoptosis in vitro. Additionally, we found that ANRIL knockdown decreased p-P65, P65, IL-1β, IL-6, TNF-a, and iNOS levels, whereas these effects were reversed by NF-κB overexpression both in vitro and in vivo. Our results suggest that ANRIL knockdown attenuates neuroinflammation by suppressing the expression of NF-κB both in vitro and vivo model of IS, sugguesting that ANRIL might be a potentially viable therapeutictarget to diminish neuroinflammation in IS patients.


Human Cell ◽  
2021 ◽  
Author(s):  
Jiaying Zhu ◽  
Zhu Zhu ◽  
Yipin Ren ◽  
Yukang Dong ◽  
Yaqi Li ◽  
...  

AbstractLINGO-1 may be involved in the pathogenesis of cerebral ischemia. However, its biological function and underlying molecular mechanism in cerebral ischemia remain to be further defined. In our study, middle cerebral artery occlusion/reperfusion (MACO/R) mice model and HT22 cell oxygen–glucose deprivation/reperfusion (OGD/R) were established to simulate the pathological process of cerebral ischemia in vivo and in vitro and to detect the relevant mechanism. We found that LINGO-1 mRNA and protein were upregulated in mice and cell models. Down-regulation LINGO-1 improved the neurological symptoms and reduced pathological changes and the infarct size of the mice after MACO/R. In addition, LINGO-1 interference alleviated apoptosis and promoted cell proliferation in HT22 of OGD/R. Moreover, down-regulation of LINGO-1 proved to inhibit nuclear translocation of p-NF-κB and reduce the expression level of p-JAK2 and p-STAT3. In conclusion, our data suggest that shLINGO-1 attenuated ischemic injury by negatively regulating NF-KB and JAK2/STAT3 pathways, highlighting a novel therapeutic target for ischemic stroke.


2018 ◽  
Vol 64 (3) ◽  
pp. e12471 ◽  
Author(s):  
Hao Zhou ◽  
Qiang Ma ◽  
Pingjun Zhu ◽  
Jun Ren ◽  
Russel J. Reiter ◽  
...  

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Mini Chandra ◽  
Jonathan Fox ◽  
Wayne Orr ◽  
Christopher Kevil ◽  
Sumitra Miriyala ◽  
...  

Generation of reactive oxygen species (ROS) has been implicated in myocardial infarction (MI), stroke and sudden cardiac death. Mitochondrial respiration is a major source of ROS production and lipids regulate mitochondrial oxidative metabolism and homeostasis through effects on mitochondrial fusion and fission and on the activity of mitochondrial membrane proteins. Lipid phosphate phosphatases (LPPs) control the conversion of bioactive lipid phosphates to their dephosphorylated counterparts. These include phosphatidic acid (PA), and lysophosphatidic acid (LPA). Oxidative stress was identified to transactivate microRNA-92a, which is a negative regulator of LPP3. We found that LPP3 expression was markedly down regulated in ischemic regions after ischemia/reperfusion (I/R) injury. We observed a similar trend in the myocardium from patients with acute MI at 24h. Our in vitro studies indicate that overexpression of LPP3 protects the cardiomyocyte against ROS-induced cardiac injury and reduction of LPP3 by conditional specific cardiac knockout of the LPP3 gene in mice increases cardiac dysfunction and mortality. These mice are viable and fertile but showed increased mortality ~8 months (Fig1). Blood pressure was similar in LPP3 fl/fl (96 ± 9 mmHg; n = 19) and Myh6- LPP3 Δ mice (92 ± 7 mmHg; n = 19), although heart rates were significantly higher in Myh6- LPP3 Δ 3 month old mice (642 ± 21 bpm, compared to LPP3 fl/fl with 600± 17 bpm; P<0.001). Knockdown of LPP3 enhanced cardiomyocyte hypertrophy induced by LPA based on analysis of sarcomere organization, cell surface area, levels of fetal genes ANP and BNP, and ANF release from nuclei, which are hallmarks of cardiomyocyte hypertrophy, indicating that LPP3 negatively regulates cardiomyocyte hypertrophy induced by LPA.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Shibin Du ◽  
Youliang Deng ◽  
Hongjie Yuan ◽  
Yanyan Sun

Inflammation had showed its important role in the pathogenesis of cerebral ischemia and secondary damage. Safflower yellow B (SYB) had neuroprotective effects against oxidative stress-induced brain injuries, but the mechanisms were still largely unknown to us. In this study, we tried to investigate the anti-inflammation effects of SYB and the possible roles of AMPK/NF-κB signaling pathway on these protective effects. In vivo, brain ischemia/reperfusion (I/R) was induced by transient middle cerebral artery occlusion for 2 h and reperfusion for 20 h. Neurofunctional evaluation, infarction area, and brain water contents were measured. Brain injury markers and inflammatory cytokines levels were measured by ELISA kits. In vitro, cell viability, apoptosis, and LDH leakage were measured after I/R in PC12 cells. The expression and phosphorylation levels of AMPK, NF-κB p65, and P-IκB-α in cytoplasm and nuclear were measured by Western blotting. SiRNA experiment was performed to certify the role of AMPK. The results showed SYB reduced infarct size, improved neurological outcomes, and inhibited brain injury after I/R. In vitro test, SYB treatment alleviated PC12 cells injury and apoptosis and inhibited the inflammatory cytokines (IL-1, IL-6, TNF-α, and COX-2) in a dose-dependent manner. SYB treatment induced AMPK phosphorylation and inhibited NF-κB p65 nuclear translocation both in brain and in PC12 cells. Further studies also showed that the inhibition of NF-κB activity of SYB was through AMPK. In conclusion, SYB protected brain I/R injury through reducing expression of inflammatory cytokines and this effect might be partly due to the inhibition of NF-κB mediated by AMPK.


Antioxidants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 546 ◽  
Author(s):  
Leila Reyes ◽  
David P. Bishop ◽  
Clare L. Hawkins ◽  
Benjamin S. Rayner

Oxidative stress is a major hallmark of cardiac ischemia/reperfusion (I/R) injury. This partly arises from the presence of activated phagocytes releasing myeloperoxidase (MPO) and its production of hypochlorous acid (HOCl). The dietary supplement selenomethionine (SeMet) has been shown to bolster endogenous antioxidant processes as well as readily react with MPO-derived oxidants. The aim of this study was to assess whether supplementation with SeMet could modulate the extent of cellular damage observed in an in vitro cardiac myocyte model exposed to (patho)-physiological levels of HOCl and an in vivo rat model of cardiac I/R injury. Exposure of the H9c2 cardiac myoblast cell line to HOCl resulted in a dose-dependent increase in necrotic cell death, which could be prevented by SeMet supplementation and was attributed to SeMet preventing the HOCl-induced loss of mitochondrial inner trans-membrane potential, and the associated cytosolic calcium accumulation. This protection was credited primarily to the direct oxidant scavenging ability of SeMet, with a minor contribution arising from the ability of SeMet to bolster cardiac myoblast glutathione peroxidase (GPx) activity. In vivo, a significant increase in selenium levels in the plasma and heart tissue were seen in male Wistar rats fed a diet supplemented with 2 mg kg−1 SeMet compared to controls. However, SeMet-supplementation demonstrated only limited improvement in heart function and did not result in better heart remodelling following I/R injury. These data indicate that SeMet supplementation is of potential benefit within pathological settings where excessive HOCl is known to be generated but has limited efficacy as a therapeutic agent for the treatment of heart attack.


Sign in / Sign up

Export Citation Format

Share Document