scholarly journals ABCC6–Mediated ATP Secretion by the Liver Is the Main Source of the Mineralization Inhibitor Inorganic Pyrophosphate in the Systemic Circulation—Brief Report

2014 ◽  
Vol 34 (9) ◽  
pp. 1985-1989 ◽  
Author(s):  
Robert S. Jansen ◽  
Suzanne Duijst ◽  
Sunny Mahakena ◽  
Daniela Sommer ◽  
Flóra Szeri ◽  
...  
2019 ◽  
Vol 476 (16) ◽  
pp. 2297-2319 ◽  
Author(s):  
Marta Grzechowiak ◽  
Milosz Ruszkowski ◽  
Joanna Sliwiak ◽  
Kamil Szpotkowski ◽  
Michal Sikorski ◽  
...  

Abstract Inorganic pyrophosphatases (PPases, EC 3.6.1.1), which hydrolyze inorganic pyrophosphate to phosphate in the presence of divalent metal cations, play a key role in maintaining phosphorus homeostasis in cells. DNA coding inorganic pyrophosphatases from Arabidopsis thaliana (AtPPA1) and Medicago truncatula (MtPPA1) were cloned into a bacterial expression vector and the proteins were produced in Escherichia coli cells and crystallized. In terms of their subunit fold, AtPPA1 and MtPPA1 are reminiscent of other members of Family I soluble pyrophosphatases from bacteria and yeast. Like their bacterial orthologs, both plant PPases form hexamers, as confirmed in solution by multi-angle light scattering and size-exclusion chromatography. This is in contrast with the fungal counterparts, which are dimeric. Unexpectedly, the crystallized AtPPA1 and MtPPA1 proteins lack ∼30 amino acid residues at their N-termini, as independently confirmed by chemical sequencing. In vitro, self-cleavage of the recombinant proteins is observed after prolonged storage or during crystallization. The cleaved fragment corresponds to a putative signal peptide of mitochondrial targeting, with a predicted cleavage site at Val31–Ala32. Site-directed mutagenesis shows that mutations of the key active site Asp residues dramatically reduce the cleavage rate, which suggests a moonlighting proteolytic activity. Moreover, the discovery of autoproteolytic cleavage of a mitochondrial targeting peptide would change our perception of this signaling process.


2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


2007 ◽  
Vol 43 ◽  
pp. 105-120 ◽  
Author(s):  
Michael L. Paffett ◽  
Benjimen R. Walker

Several molecular and cellular adaptive mechanisms to hypoxia exist within the vasculature. Many of these processes involve oxygen sensing which is transduced into mediators of vasoconstriction in the pulmonary circulation and vasodilation in the systemic circulation. A variety of oxygen-responsive pathways, such as HIF (hypoxia-inducible factor)-1 and HOs (haem oxygenases), contribute to the overall adaptive process during hypoxia and are currently an area of intense research. Generation of ROS (reactive oxygen species) may also differentially regulate vascular tone in these circulations. Potential candidates underlying the divergent responses between the systemic and pulmonary circulations may include Nox (NADPH oxidase)-derived ROS and mitochondrial-derived ROS. In addition to alterations in ROS production governing vascular tone in the hypoxic setting, other vascular adaptations are likely to be involved. HPV (hypoxic pulmonary vasoconstriction) and CH (chronic hypoxia)-induced alterations in cellular proliferation, ionic conductances and changes in the contractile apparatus sensitivity to calcium, all occur as adaptive processes within the vasculature.


2010 ◽  
Vol 80 (45) ◽  
pp. 279-292 ◽  
Author(s):  
Richard Hurrell

Febrile malaria and asymptomatic malaria parasitemia substantially decrease iron absorption in single-meal, stable isotope studies in women and children, but to date there is no evidence of decreased efficacy of iron-fortified foods in malaria-endemic regions. Without inadequate malarial surveillance or health care, giving iron supplements to children in areas of high transmission could increase morbidity and mortality. The most likely explanation is the appearance of non-transferrin-bound iron (NTBI) in the plasma. NTBI forms when the rate of iron influx into the plasma exceeds the rate of iron binding to transferrin. Two studies in women have reported substantially increased NTBI with the ingestion of iron supplements. Our studies confirm this, but found no significant increase in NTBI on consumption of iron-fortified food. It seems likely that the malarial parasite in hepatocytes can utilize NTBI, but it cannot do so in infected erythrocytes. NTBI however may increase the sequestration of parasite-infected erythrocytes in capillaries. Bacteremia is common in children with severe malaria and sequestration in villi capillaries could lead to a breaching of the intestinal barrier, allowing the passage of pathogenic bacteria into the systemic circulation. This is especially important as frequent high iron doses increase the number of pathogens in the intestine at the expense of the barrier bacteria.


1995 ◽  
Vol 73 (03) ◽  
pp. 472-477 ◽  
Author(s):  
H R Lijnen ◽  
B Van Hoef ◽  
D Collen

SummaryThe interactions of recombinant staphylokinase (SakSTAR) with human platelets were investigated in a buffer milieu, in a human plasma milieu in vitro, and in plasma from patients with acute myocardial infarction (AMI) treated with SakSTAR.In a buffer milieu, the activation rate of plasminogen by SakSTAR or streptokinase (SK) was not significantly altered by addition of platelets. Specific binding of SakSTAR or SK to either resting or thrombin- activated platelets was very low. ADP-induced or collagen-induced platelet aggregation in platelet-rich plasma (PRP) was 94 ± 2.7% or 101 ± 1.7% of control in the presence of 0.1 to 20 μM SakSTAR, with corresponding values of 95 ± 2.8% or 90 ± 4.6% of control in the presence of 0.1 to 4 μM SK. No effects were observed on platelet disaggregation. ATP secretion following collagen-induced platelet aggregation was 4.3 ± 0.26 μM for SakSTAR (at concentrations of 0.1 to 20 μM) and 4.4 ± 0.35 μM for SK (at concentrations of 0.1 to 4 μM), as compared to 3.4 ± 0.70 μM in the absence of plasminogen activator.Fifty % lysis in 2 h (C50) of 60 μl 125I-fibrin labeled platelet-poor plasma (PPP) clots prepared from normal plasma or from plasma of patients with Glanzmann thrombasthenia and immersed in 0.5 ml normal plasma, was obtained with 12 or 16 nM SakSTAR and with 49 or 40 nM SK, respectively. C50 values for lysis of 60 μl PRP clots prepared from normal or patient plasma were also comparable for SakSTAR (19 or 21 nM), whereas SK was 2-fold more potent toward PRP clots prepared from Glanzmann plasma as compared to normal plasma (C50 of 130 versus 270 nM).No significant effect of SakSTAR on platelet function was observed in plasma from patients with AMI treated with SakSTAR, as revealed by unaltered platelet count, platelet aggregation and ATP secretion.Thus, no effects of high SakSTAR concentrations were observed on human platelets in vitro, nor of therapeutic SakSTAR concentrations on platelet function in plasma.


2020 ◽  
pp. 7-24
Author(s):  
Zhanna Kozlova ◽  
Ivan Krasnyuk ◽  
Yuliya Lebedeva ◽  
Ekaterina Odintsova

Oral mucosal drug delivery is an alternative method of systemic delivery with several advantages over both injectable and enteral methods. Drugs that are absorbed through the oral mucosa directly enter the systemic circulation, passing through the gastrointestinal tract and first-pass metabolism in the liver due to oral mucosa being highly vascularised. This results in rapid onset of action for some drugs because of a more comfortable and convenient way of delivery than the intravenous one. But not all drugs can be administered through the oral mucosa due to characteristics of the oral mucosa and physical and chemical properties of the drug.


Author(s):  
Preethi Sudheer ◽  
Koushik Y ◽  
Satish P ◽  
Uma Shankar M S ◽  
R S Thakur

As a consequence of modern drug discovery techniques, there has been a steady increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble and solubility is one of the most important parameter to achieve desired concentration of drug in systemic circulation for therapeutic response. It is a great challenge for pharmaceutical scientist to convert those molecules into orally administered formulation with sufficient bioavailability.  Among the several approaches to improve oral bioavailability of these molecules, Self-micron emulsifying drug delivery system (SMEDDS) is one of the approaches usually used to improve the bioavailability of hydrophobic drugs. However, conventional SMEDDS are mostly prepared in a liquid form, which can have several disadvantages. Accordingly, solid SMEDDS (S-SMEDDS) prepared by solidification of liquid/semisolid self-micron emulsifying (SME) ingredients into powders have gained popularity. This article provides an overview of the recent advancements in S-SMEDDS such as methodology, techniques and future research directions.


immuneACCESS ◽  
2019 ◽  
Author(s):  
SK Subudhi ◽  
A Aparicio ◽  
J Gao ◽  
AJ Zurita ◽  
JC Araujo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document