scholarly journals Endothelial-Mesenchymal Transition in Cardiovascular Disease

Author(s):  
Zahra Alvandi ◽  
Joyce Bischoff

Endothelial-to-mesenchymal transition is a dynamic process in which endothelial cells suppress constituent endothelial properties and take on mesenchymal cell behaviors. To begin the process, endothelial cells loosen their cell-cell junctions, degrade the basement membrane, and migrate out into the perivascular surroundings. These initial endothelial behaviors reflect a transient modulation of cellular phenotype, that is, a phenotypic modulation, that is sometimes referred to as partial endothelial-to-mesenchymal transition. Loosening of endothelial junctions and migration are also seen in inflammatory and angiogenic settings such that endothelial cells initiating endothelial-to-mesenchymal transition have overlapping behaviors and gene expression with endothelial cells responding to inflammatory signals or sprouting to form new blood vessels. Reduced endothelial junctions increase permeability, which facilitates leukocyte trafficking, whereas endothelial migration precedes angiogenic sprouting and neovascularization; both endothelial barriers and quiescence are restored as inflammatory and angiogenic stimuli subside. Complete endothelial-to-mesenchymal transition proceeds beyond phenotypic modulation such that mesenchymal characteristics become prominent and endothelial functions diminish. In proadaptive, regenerative settings the new mesenchymal cells produce extracellular matrix and contribute to tissue integrity whereas in maladaptive, pathologic settings the new mesenchymal cells become fibrotic, overproducing matrix to cause tissue stiffness, which eventually impacts function. Here we will review what is known about how TGF (transforming growth factor) β influences this continuum from junctional loosening to cellular migration and its relevance to cardiovascular diseases.

2019 ◽  
Vol 99 (2) ◽  
pp. 1281-1324 ◽  
Author(s):  
Sonsoles Piera-Velazquez ◽  
Sergio A. Jimenez

Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-β1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.


2019 ◽  
Vol 20 (3) ◽  
pp. 458 ◽  
Author(s):  
Fernanda Ursoli Ferreira ◽  
Lucas Eduardo Botelho Souza ◽  
Carolina Hassibe Thomé ◽  
Mariana Tomazini Pinto ◽  
Clarice Origassa ◽  
...  

The endothelial-to-mesenchymal transition (EndMT) is a biological process where endothelial cells (ECs) acquire a fibroblastic phenotype after concomitant loss of the apical-basal polarity and intercellular junction proteins. This process is critical to embryonic development and is involved in diseases such as fibrosis and tumor progression. The signaling pathway of the transforming growth factor β (TGF-β) is an important molecular route responsible for EndMT activation. However, it is unclear whether the anatomic location of endothelial cells influences the activation of molecular pathways responsible for EndMT induction. Our study investigated the molecular mechanisms and signaling pathways involved in EndMT induced by TGF-β2 in macrovascular ECs obtained from different sources. For this purpose, we used four types of endothelial cells (coronary artery endothelial cells, CAECs; primary aortic endothelial cells PAECs; human umbilical vein endothelia cells, HUVECs; and human pulmonary artery endothelial cells, HPAECs) and stimulated with 10 ng/mL of TGF-β2. We observed that among the ECs analyzed in this study, PAECs showed the best response to the TGF-β2 treatment, displaying phenotypic changes such as loss of endothelial marker and acquisition of mesenchymal markers, which are consistent with the EndMT activation. Moreover, the PAECs phenotypic transition was probably triggered by the extracellular signal–regulated kinases 1/2 (ERK1/2) signaling pathway activation. Therefore, the anatomical origin of ECs influences their ability to undergo EndMT and the selective inhibition of the ERK pathway may suppress or reverse the progression of diseases caused or aggravated by the involvement EndMT activation.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Valentin Platel ◽  
Sébastien Faure ◽  
Isabelle Corre ◽  
Nicolas Clere

Cancer cells evolve in a very complex tumor microenvironment, composed of several cell types, among which the endothelial cells are the major actors of the tumor angiogenesis. Today, these cells are also characterized for their plasticity, as endothelial cells have demonstrated their potential to modify their phenotype to differentiate into mesenchymal cells through the endothelial-to-mesenchymal transition (EndoMT). This cellular plasticity is mediated by various stimuli including transforming growth factor-β (TGF-β) and is modulated dependently of experimental conditions. Recently, emerging evidences have shown that EndoMT is involved in the development and dissemination of cancer and also in cancer cell to escape from therapeutic treatment. In this review, we summarize current updates on EndoMT and its main induction pathways. In addition, we discuss the role of EndoMT in tumorigenesis, metastasis, and its potential implication in cancer therapy resistance.


Development ◽  
2021 ◽  
Author(s):  
Yinshan Fang ◽  
Hongxia Shao ◽  
Qi Wu ◽  
Neng Chun Wong ◽  
Natalie Tsong ◽  
...  

Alveologenesis requires the coordinated modulation of the epithelial and mesenchymal compartments to generate mature alveolar saccules for efficient gas exchange. However, the molecular mechanisms underlying the epithelial-mesenchymal interaction during alveologenesis are poorly understood. Here, we report that Wnts produced by epithelial cells are critical for neonatal alveologenesis. Deletion of the Wnt chaperon protein Wntless homolog (Wls) disrupts alveolar formation, resulting in enlarged saccules in Sftpc-Cre/Nkx2.1-Cre; Wlsloxp/loxp mutants. Although commitment of the alveolar epithelium is unaffected, α-SMA+ mesenchymal cells persist in the alveoli accompanied by increased collagen deposition and mutants exhibit exacerbated fibrosis following bleomycin challenge. Notably, α-SMA+ cells include a significant number of endothelial cells resembling endothelial to mesenchymal transition (EndMT) which is also present in Ager-CreER; Wlsloxp/loxp mutants following early postnatal Wls deletion. These findings provide initial evidence that epithelial-derived Wnts are critical for the differentiation of the surrounding mesenchyme during early postnatal alveologenesis.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Myeongjoo Son ◽  
Seyeon Oh ◽  
Ji Tae Jang ◽  
Kuk Hui Son ◽  
Kyunghee Byun

Endothelial-to-mesenchymal transition (EndMT), which is involved in the development of various cardiovascular diseases, is induced by dyslipidemia or obesity. In dyslipidemia, the increased levels of oxidized low-density lipoproteins (oxLDL) upregulated the lectin-type oxidized LDL receptor 1 (Lox-1), which then upregulated the down signaling pathways of PKC-α/MMPs/TGF-β/SMAD2 or 3 and increased the EndMT. In this study, we investigated the effect of pyrogallol-phloroglucinol-6,6-bieckol (PPB), which is a compound of Ecklonia cava (E. cava), on decreased blood pressure (BP) by attenuating the EndMT in a high-fat diet- (HFD-) fed animal model. We also investigated PPB’s attenuation effect on EndMT in oxLDL-treated mouse endothelial cells as an in vitro model. The results indicated that, in the aorta or endothelial cells of mice, the HFD or oxLDL treatment significantly increased the expression of Lox-1/PKC-α/MMP9/TGF-β/SMAD2/SMAD3. The PPB treatment significantly decreased its expression. In contrast, the HFD or oxLDL treatment significantly decreased the expression of the EC markers (PECAM-1 and vWF) while the PPB treatment significantly increased them. Moreover, the HFD or oxLDL treatment significantly increased the expression of the mesenchymal cell markers (α-SMA and vimentin) while PPB treatment significantly decreased them. PPB decreased the intima-media thickness and extracellular matrix amount of the aorta and attenuated the BP, which was increased by the HFD. In conclusion, PPB attenuated the upregulation of Lox-1/PKC-α/MMP9/TGF-β/SMAD2 and 3 and restored the EndMT in HFD-fed animals. Moreover, PPB showed a restoring effect on HFD-induced hypertension.


Author(s):  
Jin Ma ◽  
Gerard van der Zon ◽  
Manuel A. F. V. Gonçalves ◽  
Maarten van Dinther ◽  
Midory Thorikay ◽  
...  

Endothelial-to-mesenchymal transition (EndMT) plays an important role in embryonic development and disease progression. Yet, how different members of the transforming growth factor-β (TGF-β) family regulate EndMT is not well understood. In the current study, we report that TGF-β2, but not bone morphogenetic protein (BMP)9, triggers EndMT in murine endothelial MS-1 and 2H11 cells. TGF-β2 strongly upregulates the transcription factor SNAIL, and the depletion of Snail is sufficient to abrogate TGF-β2-triggered mesenchymal-like cell morphology acquisition and EndMT-related molecular changes. Although SLUG is not regulated by TGF-β2, knocking out Slug also partly inhibits TGF-β2-induced EndMT in 2H11 cells. Interestingly, in addition to SNAIL and SLUG, BMP9 stimulates inhibitor of DNA binding (ID) proteins. The suppression of Id1, Id2, or Id3 expression facilitated BMP9 in inducing EndMT and, in contrast, ectopic expression of ID1, ID2, or ID3 abrogated TGF-β2-mediated EndMT. Altogether, our results show that SNAIL is critical and indispensable for TGF-β2-mediated EndMT. Although SLUG is also involved in the EndMT process, it plays less of a crucial role in it. In contrast, ID proteins are essential for maintaining endothelial traits and repressing the function of SNAIL and SLUG during the EndMT process. These data suggest that the control over endothelial vs. mesenchymal cell states is determined, at least in part, by a balance between the expression of SNAIL/SLUG and ID proteins.


2017 ◽  
Vol 313 (5) ◽  
pp. G492-G504 ◽  
Author(s):  
Jordi Ribera ◽  
Montse Pauta ◽  
Pedro Melgar-Lesmes ◽  
Bernat Córdoba ◽  
Anna Bosch ◽  
...  

Rising evidence points to endothelial-to-mesenchymal transition (EndMT) as a significant source of the mesenchymal cell population in fibrotic diseases. In this context, we hypothesized that liver endothelial cells undergo EndMT during fibrosis progression. Cirrhosis in mice was induced by CCl4. A transgenic mouse expressing a red fluorescent protein reporter under the control of Tie2 promoter (Tie2-tdTomato) was used to trace the acquisition of EndMT. Sinusoidal vascular connectivity was evaluated by intravital microscopy and high-resolution three-dimensional confocal microscopy. A modest but significant fraction of liver endothelial cells from both cirrhotic patients and CCl4-treated Tie2-tdTomato mice acquired an EndMT phenotype characterized by the coexpression of CD31 and α-smooth muscle actin, compared with noncirrhotic livers. Bone morphogenetic protein-7 (BMP-7) inhibited the acquisition of EndMT induced by transforming growth factor-β1 (TGF-β1) treatment in cultured primary mouse liver endothelial cells from control mice. EndMT was also reduced significantly in vivo in cirrhotic Tie2-tdTomato mice treated intraperitoneally with BMP-7 compared with untreated mice (1.9 ± 0.2 vs. 3.8 ± 0.3%, respectively; P < 0.05). The decrease of EndMT in cirrhotic livers correlated with a significant decrease in liver fibrosis ( P < 0.05) and an improvement in the vascular disorganization rate ( P < 0.05). We demonstrated the acquisition of the EndMT phenotype by a subpopulation of endothelial cells from cirrhotic livers in both animal models and patients. BMP-7 treatment decreases the occurrence of the EndMT phenotype and has a positive impact on the severity of disease by reducing fibrosis and sinusoidal vascular disorganization. NEW & NOTEWORTHY A subpopulation of liver endothelial cells from cirrhotic patients and mice with liver fibrosis undergoes endothelial-to-mesenchymal transition. Liver endothelial cells from healthy mice could transition into a mesenchymal phenotype in culture in response to TGF-β1 treatment. Fibrotic livers treated chronically with BMP-7 showed lower EndMT acquisition, reduced fibrosis, and improved vascular organization.


Cardiology ◽  
2017 ◽  
Vol 137 (3) ◽  
pp. 179-187 ◽  
Author(s):  
Juling Feng ◽  
Jingjing Zhang ◽  
Ampadu O. Jackson ◽  
Xiao Zhu ◽  
Hainan Chen ◽  
...  

Objective: Transforming growth factor β1 (TGF-β1) is the major cytokine for stimulating endothelial cells (ECs) to transdifferentiate to mesenchymal cells (MCs) in the process known as endothelial-to-mesenchymal transition (EndMT). Recently, TGF-β1-induced EndMT has been implicated in the pathogenesis of atherosclerosis (AS). It has been identified that apolipoprotein A1 (ApoA-I) obstructs TGF-β1-induced endothelial dysfunction, providing a protective effect for ECs and also anti-AS activity. However, the exact role of ApoA-I in TGF-β1-induced EndMT is not clear. In this study, we aimed to investigate whether ApoA-I can modulate TGF-β1-induced EndMT in human coronary artery ECs (HCAECs). Methods and Results: The HCAECs were treated with TGF-β1 with or without ApoA-I. Morphological changes in HCAECs and the expression of EndMT-related markers were evaluated. HCAECs treated with TGF-β1 were found to transform to MC morphology, with inconspicuous expression of EC markers such as vascular endothelial cadherin and CD31, and conspicuous expression of fibroblast-specific protein 1 (FSP-1) and α-smooth muscle actin. The treatment of HCAECs with ApoA-I inhibited the TGF-β1-induced EndMT, and elevated expression of EC markers was observed but reduced expression of MC markers. Moreover, ApoA-I impeded the expression level of Slug and Snail, crucial transcriptional factors of EndMT, and it inhibited the TGF-β1-induced phosphorylation of Smad2 and Smad3 which affected the EC morphology. In addition, the knockdown of ABCA1 by RNA interference eliminated the inhibition effect of ApoA-I on TGF-β1-induced EndMT. Conclusions: Our findings revealed a novel mechanism for the ApoA-I protective effect on endothelium function via the inhibition of TGF-β1-induced EndMT. This might provide new insights for developing strategies for modulating AS and vascular remodeling.


2018 ◽  
Vol 314 (1) ◽  
pp. L118-L126 ◽  
Author(s):  
Toshio Suzuki ◽  
Erica J. Carrier ◽  
Megha H. Talati ◽  
Anandharajan Rathinasabapathy ◽  
Xinping Chen ◽  
...  

Endothelial-to-mesenchymal transition (EndMT) is a process in which endothelial cells lose polarity and cell-to cell contacts, and undergo a dramatic remodeling of the cytoskeleton. It has been implicated in initiation and progression of pulmonary arterial hypertension (PAH). However, the characteristics of cells which have undergone EndMT cells in vivo have not been reported and so remain unclear. To study this, sugen5416 and hypoxia (SuHx)-induced PAH was established in Cdh5-Cre/Gt(ROSA)26Sortm4(ACTB-tdTomato,EGFP)Luo/J double transgenic mice, in which GFP was stably expressed in pan-endothelial cells. After 3 wk of SuHx, flow cytometry and immunohistochemistry demonstrated CD144-negative and GFP-positive cells (complete EndMT cells) possessed higher proliferative and migratory activity compared with other mesenchymal cells. While CD144-positive and α-smooth muscle actin (α-SMA)-positive cells (partial EndMT cells) continued to express endothelial progenitor cell markers, complete EndMT cells were Sca-1-rich mesenchymal cells with high proliferative and migratory ability. When transferred in fibronectin-coated chamber slides containing smooth muscle media, α-SMA robustly expressed in these cells compared with cEndMT cells that were grown in maintenance media. Demonstrating additional paracrine effects, conditioned medium from isolated complete EndMT cells induced enhanced mesenchymal proliferation and migration and increased angiogenesis compared with conditioned medium from resident mesenchymal cells. Overall, these findings show that EndMT cells could contribute to the pathogenesis of PAH both directly, by transformation into smooth muscle-like cells with higher proliferative and migratory potency, and indirectly, through paracrine effects on vascular intimal and medial proliferation.


Author(s):  
Jennifer S. Fang ◽  
Nan W. Hultgren ◽  
Christopher C. W. Hughes

During development and in several diseases, endothelial cells (EC) can undergo complete endothelial-to-mesenchymal transition (EndoMT or EndMT) to generate endothelial-derived mesenchymal cells. Emerging evidence suggests that ECs can also undergo a partial EndoMT to generate cells with intermediate endothelial- and mesenchymal-character. This partial EndoMT event is transient, reversible, and supports both developmental and pathological angiogenesis. Here, we discuss possible regulatory mechanisms that may control the EndoMT program to dictate whether cells undergo complete or partial mesenchymal transition, and we further consider how these pathways might be targeted therapeutically in cancer.


Sign in / Sign up

Export Citation Format

Share Document