scholarly journals Essential Hypertension Is Associated With Changes in Gut Microbial Metabolic Pathways

Author(s):  
Michael Nakai ◽  
Rosilene V. Ribeiro ◽  
Bruce R. Stevens ◽  
Paul Gill ◽  
Rikeish R. Muralitharan ◽  
...  

Recent evidence supports a role for the gut microbiota in hypertension, but whether ambulatory blood pressure is associated with gut microbiota and their metabolites remains unclear. We characterized the function of the gut microbiota, their metabolites and receptors in untreated human hypertensive participants in Australian metropolitan and regional areas. Ambulatory blood pressure, fecal microbiome predicted from 16S rRNA gene sequencing, plasma and fecal metabolites called short-chain fatty acid, and expression of their receptors were analyzed in 70 untreated and otherwise healthy participants from metropolitan and regional communities. Most normotensives were female (66%) compared with hypertensives (35%, P <0.01), but there was no difference in age between the groups (59.2±7.7 versus 60.3±6.6 years old). Based on machine learning multivariate covariance analyses of de-noised amplicon sequence variant prevalence data, we determined that there were no significant differences in predicted gut microbiome α- and β-diversity metrics between normotensives versus essential or masked hypertensives. However, select taxa were specific to these groups, notably Acidaminococcus spp ., Eubacterium fissicatena, and Muribaculaceae were higher, while Ruminococcus and Eubacterium eligens were lower in hypertensives. Importantly, normotensive and essential hypertensive cohorts could be differentiated based on gut microbiome gene pathways and metabolites. Specifically, hypertensive participants exhibited higher plasma acetate and butyrate, but their immune cells expressed reduced levels of short-chain fatty acid-activated GPR43 (G-protein coupled receptor 43). In conclusion, gut microbial diversity did not change in essential hypertension, but we observed a significant shift in microbial gene pathways. Hypertensive subjects had lower levels of GPR43, putatively blunting their response to blood pressure-lowering metabolites.

2021 ◽  
Author(s):  
Michael Nakai ◽  
Rosilene V Ribeiro ◽  
Bruce R. Stevens ◽  
Paul Gill ◽  
Rikeish R. Muralitharan ◽  
...  

AbstractAimsRecent evidence supports a role for the gut microbiota in hypertension, but whether ambulatory blood pressure (BP) is associated with gut microbiota and their metabolites remains unclear. Here we characterised the function of the gut microbiota, their metabolites and receptors in untreated human hypertensive participants in metropolitan and regional areas of Australia.Methods and ResultsAmbulatory BP, faecal microbiome DNA 16S rRNA gene sequencing, plasma and faecal metabolites called short-chain fatty acid (SCFAs), and expression of their receptors were analysed in 70 untreated and otherwise healthy participants from metropolitan and regional communities. Based on machine-learning multivariate covariance analyses of de-noised amplicon sequence variant (ASV) prevalence data, we determined that there were no significant differences in gut microbiome community α- and β-diversity metrics between normotensives versus essential, white coat or masked hypertensives. However, select taxa were specific to these groups, notably Acidaminococcus spp. in essential hypertensives, and Ruminococcus spp. and Coprobacillus in normotensive subjects. Importantly, normotensive and essential hypertensive cohorts could be differentiated based on gut microbiome gene pathways and metabolites. Specifically, hypertensive participants exhibited higher plasma acetate and butyrate, but their immune cells expressed reduced levels of SCFA-activated G-protein coupled receptor 43 (GPR43).ConclusionsWhile gut microbial diversity did not change in essential hypertension, there was a significant shift in microbial gene pathways, and an increase in the circulating levels of the SCFAs acetate and butyrate. Hypertensive subjects, however, had lower levels of the SCFA-sensing receptor GPR43, putatively blunting their response to BP-lowering metabolites.


2021 ◽  
Author(s):  
Yi Fan ◽  
Andrew Forgie ◽  
Tingting Ju ◽  
Camila Marcolla ◽  
Tom Inglis ◽  
...  

To maintain food safety and flock health in broiler chicken production, biosecurity approaches to keep chicken barns free of pathogens are important. Canadian broiler chicken producers must deep clean their barns with chemical disinfectants at least once annually (full disinfection; FD) and may wash with water (water-wash; WW) throughout the year. However, many producers use FD after each flock, assuming a greater efficacy of more stringent cleaning protocols, although little information is known regarding how these two cleaning practices affect pathogen population and gut microbiota. In the current study, a cross-over experiment over four production cycles was conducted in seven commercial chicken barns to compare WW and FD. We evaluated the effects of barn cleaning method on the commercial broiler performance, cecal microbiota composition, pathogen occurrence and abundance, as well as short-chain fatty acid concentrations in the month-old broiler gut. The 30-day body weight and mortality rate were not affected by the barn cleaning methods. The WW resulted in a modest but significant effect on the structure of broiler cecal microbiota (weighted-UniFrac; adonis p = 0.05, and unweighted-UniFrac; adonis p = 0.01), with notable reductions in Campylobacter jejuni occurrence and abundance. In addition, the WW group had increased cecal acetate, butyrate and total short-chain fatty acid concentrations, which were negatively correlated with C. jejuni abundance. Our results support the use of WW over FD to enhance the activity of the gut microbiota and potentially reduce zoonotic transmission of C. jejuni in broiler production without previous disease challenges.


2020 ◽  
Vol 75 ◽  
pp. 104278
Author(s):  
Fengfeng Mei ◽  
Zhouwei Duan ◽  
Muxue Chen ◽  
Jinfeng Lu ◽  
Meihui Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document