Abstract P241: Calpain-1 Is Increased in Mitochondria and Contributes to Mitochondrial ROS Generation in High Glucose--Stimulated Endothelial Cells and Endothelial Dysfunction in Mouse Models of Diabetes

2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Qing Zhao ◽  
Futian Tang ◽  
Limei Shan ◽  
Inga Cepinskas ◽  
Gedas Cepinskas ◽  
...  

Objectives: Elevated levels of reactive oxygen species (ROS) are the initial source of endothelial dysfunction in diabetes. Calpain has been implicated in diabetic vascular complications. The present study was to investigate the role of calpain in mitochondrial ROS generation in endothelial cells and vascular dysfunction in diabetic mice. Methods: Endothelial cells cultured from human umbilical vein (HUVEC) were stimulated with high glucose. Calpain activity and protein were determined in mitochondria of HUVEC. Intracellular and mitochondrial ROS generation as well as apoptosis were measured. Type I diabetic OVE 26 mice and type II diabetic db/db mice with calpastatin over-expression (OVE26/CAST and db/db-CAST) were generated, respectively. Type I diabetes was also induced in both wild-type and Tg-CAST mice by injection of streptozocin (STZ). The endothelium-dependent relaxation of aortic ring was measured. Results: High glucose significantly increased calpain-1 protein, calpain activity and ROS generation in mitochondria of HUVEC. Pharmacological inhibition of calpain or over-expression of calpastatin abrogated high glucose-induced intracellular ROS production, mitochondrial ROS generation and apoptosis in HUVEC. Incubation of isolated mitochondria with calpain-1 protein significantly induced its ROS generation and the membrane potential. In diabetic mice, calpain activity was induced in aortic vessels, which correlated with an increase in ROS production and protein tyrosine nitration. Over-expression of calpastatin prevented calpain activity, reduced ROS production and inhibited protein tyrosine nitration in diabetic mice. Aortic ring segments from diabetic mice exhibited a significant reduction in vascular relaxation to acetylcholine, which was reversed by over-expression of calpastatin in Tg-CAST, OVE26/CAST and db/db-CAST mice. Conclusions: This study has demonstrated a novel role of calpain in mitochondrial ROS generation, which contributes to apoptosis in endothelial cells during hyperglycemia. Thus, over-expression of calpastatin inhibits reduces ROS production and ameliorates endothelium-dependent vascular dysfunction in mouse models of diabetes.

2015 ◽  
Vol 309 (1) ◽  
pp. H147-H156 ◽  
Author(s):  
Agnieszka Koziel ◽  
Izabela Sobieraj ◽  
Wieslawa Jarmuszkiewicz

The endothelium is relatively independent of the mitochondrial energy supply, but mitochondria-derived ROS may play an important role in the development of many cardiovascular diseases. Energy-dissipating uncoupling proteins (UCPs) mediate free fatty acid-activated, purine nucleotide-inhibited proton conductance (uncoupling) in the inner mitochondrial membrane. We have described a functional characteristic and an antioxidative role for UCP2 in endothelial cells and isolated mitochondria and how this function is altered by long-term growth in high concentrations of glucose. Human umbilical vein endothelial cells (EA.hy926 line) were grown in media with either high (25 mM) or normal (5.5 mM) glucose concentrations. Under nonphosphorylating and phosphorylating conditions, UCP activity was significantly higher in mitochondria isolated from high glucose-treated cells. More pronounced control of the respiratory rate, membrane potential, and ROS by UCP2 was observed in these mitochondria. A greater UCP2-mediated decrease in ROS generation indicates an improved antioxidative role for UCP2 under high glucose conditions. Mitochondrial and nonmitochondrial ROS generations were significantly higher in high glucose-treated cells independent of UCP2 expression. UCP2 gene silencing led to elevated mitochondrial ROS formation and ICAM1 expression, especially in high glucose-cultured cells. UCP2 influenced endothelial cell viability and resistance to oxidative stress. Endothelial cells exposed to high glucose concentrations were significantly more resistant to peroxide. In these cells, the increased activity of UCP2 led to improved stress resistance and protection against acute oxidative stress. Our results indicate that endothelial UCP2 may function as a sensor and negative regulator of mitochondrial ROS production in response to hyperglycemia.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3372 ◽  
Author(s):  
Yan-Hui Shen ◽  
Li-Ying Wang ◽  
Bao-Bao Zhang ◽  
Qi-Ming Hu ◽  
Pu Wang ◽  
...  

Ethyl rosmarinate (RAE) is one of the active constituents from Clinopodium chinense (Benth.) O. Kuntze, which is used for diabetic treatment in Chinese folk medicine. In this study, we investigated the protective effect of RAE on high glucose-induced injury in endothelial cells and explored its underlying mechanisms. Our results showed that both RAE and rosmarinic acid (RA) increased cell viability, decreased the production of reactive oxygen species (ROS), and attenuated high glucose-induced endothelial cells apoptosis in a dose-dependent manner, as evidenced by Hochest staining, Annexin V–FITC/PI double staining, and caspase-3 activity. RAE and RA both elevated Bcl-2 expression and reduced Bax expression, according to Western blot. We also found that LY294002 (phosphatidylinositol 3-kinase, or PI3K inhibitor) weakened the protective effect of RAE. In addition, PDTC (nuclear factor-κB, or NF-κB inhibitor) and SP600125 (c-Jun N-terminal kinase, or JNK inhibitor) could inhibit the apoptosis in endothelial cells caused by high glucose. Further, we demonstrated that RAE activated Akt, and the molecular docking analysis predicted that RAE showed more affinity with Akt than RA. Moreover, we found that RAE inhibited the activation of NF-κB and JNK. These results suggested that RAE protected endothelial cells from high glucose-induced apoptosis by alleviating reactive oxygen species (ROS) generation, and regulating the PI3K/Akt/Bcl-2 pathway, the NF-κB pathway, and the JNK pathway. In general, RAE showed greater potency than RA equivalent.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Alexander S Milliken ◽  
Sergiy M Nadtochiy ◽  
Paul S Brookes

Succinate is a metabolite that plays a central role in ischemia-reperfusion (IR) injury,which is relevant to myocardial infarction (heart attack) and stroke. Succinateaccumulates during ischemia and is rapidly consumed at reperfusion driving reactiveoxygen species (ROS) generation at complex-I (Cx-I) and III of the mitochondrial electrontransport chain. This ROS production triggers cell-death, leading to tissue necrosis.Although succinate oxidation has been extensively studied and exploited as a noveltherapeutic target, only 1/3 of the succinate accumulated in ischemia is oxidized atreperfusion, with the remaining 2/3 being released from the cell via monocarboxylatetransporter 1 (MCT1). Extracellular succinate is thought to be pro-inflammatory, and ithas been proposed that preventing succinate release may be therapeutically beneficial.To determine the impact of preventing succinate release on IR injury, we comparedfunctional recovery (i.e. rate x pressure product, RPP) and infarction (i.e. tissue necrosis)of Langendorff perfused mouse hearts treated with an MCT1 inhibitor, AR-C155858,versus vehicle control. This revealed that succinate retention worsens IR injury (i.e.increased infarction and decreased functional recovery) likely due to increased ROS. Totest this hypothesis, we utilized a Langendorff apparatus positioned within aspectrofluorimeter, which permits real-time fluorescence measurements in beatingmouse hearts. Using the mitochondria targeted superoxide probe, MitoSOX red tomeasure ROS production at reperfusion + AR-C155858, demonstrated that succinateretention leads to enhanced mitochondrial ROS generation at the onset of reperfusion.Overall, these results suggest that inhibiting succinate release in the context of IR injurymay not be a viable therapeutic approach, regardless of any downstream anti-inflammatory effects.


Author(s):  
Yue Zheng ◽  
Yuanfeng Zhu ◽  
Xin Liu ◽  
Hang Zheng ◽  
Yongjun Yang ◽  
...  

Neutrophil extracellular traps (NETs) are extracellular DNA webs released from neutrophils to mediate host anti-microbial defense. As NETs could also induce thrombosis and cause organ injury, their release should be strictly controlled. However, it is not well understood about the intrinsic mechanisms that prevent unfavorable NETs. Herein, an accidental finding of NETs release from human peripheral neutrophils was firstly described in serum free culture, and it was also determined as a conserved effect for serum to prevent NETs. In contrast to canonical NETs induced by phorbol-12-myristate-13-acetate (PMA), NETs formation by serum free culture was rapid and without prevalent NETosis. Next, albumin was screened out as a key serum component that mediated the suppression of NETs. Moreover, NETs induced upon serum or albumin deficiency were independent of the canonical pathway that involves NOX2 activation and cytosol ROS production. Instead, the generation of mitochondrial ROS (mtROS) was upregulated to promote NETs release. Albumin exhibited mtROS scavenging activity and thus inhibited NETs. Serum free culture also induces the release of NET-bound oxidized mtDNA which stimulated IFN-β production. Overall, our research provides new evidences that characterize the NETs production in serum free culture and determine the mechanisms of serum albumin to inhibit NETs.


2007 ◽  
Vol 293 (3) ◽  
pp. R1159-R1168 ◽  
Author(s):  
Florian L. Muller ◽  
Wook Song ◽  
Youngmok C. Jang ◽  
Yuhong Liu ◽  
Marian Sabia ◽  
...  

Reactive oxygen species (ROS), especially mitochondrial ROS, are postulated to play a significant role in muscle atrophy. We report a dramatic increase in mitochondrial ROS generation in three conditions associated with muscle atrophy: in aging, in mice lacking CuZn-SOD ( Sod1−/−), and in the neurodegenerative disease, amyotrophic lateral sclerosis (ALS). ROS generation in muscle mitochondria is nearly threefold higher in 28- to 32-mo-old than in 10-mo-old mice and is associated with a 30% loss in gastrocnemius mass. In Sod1−/− mice, muscle mitochondrial ROS production is increased >100% in 20-mo compared with 5-mo-old mice along with a >50% loss in muscle mass. ALS G93A mutant mice show a 75% loss of muscle mass during disease progression and up to 12-fold higher muscle mitochondrial ROS generation. In a second ALS mutant model, H46RH48Q mice, ROS production is approximately fourfold higher than in control mice and is associated with a less dramatic loss (30%) in muscle mass. Thus ROS production is strongly correlated with the extent of muscle atrophy in these models. Because each of the models of muscle atrophy studied are associated to some degree with a loss of innervation, we were interested in determining whether denervation plays a role in ROS generation in muscle mitochondria isolated from hindlimb muscle following surgical sciatic nerve transection. Seven days postdenervation, muscle mitochondrial ROS production increased nearly 30-fold. We conclude that enhanced generation of mitochondrial ROS may be a common factor in the mechanism underlying denervation-induced atrophy.


2014 ◽  
Vol 306 (8) ◽  
pp. C768-C778 ◽  
Author(s):  
Abdul Q. Sheikh ◽  
Courtney Kuesel ◽  
Toloo Taghian ◽  
Jennifer R. Hurley ◽  
Wei Huang ◽  
...  

Diabetes-induced cardiomyopathy is characterized by cardiac remodeling, fibrosis, and endothelial dysfunction, with no treatment options currently available. Hyperglycemic memory by endothelial cells may play the key role in microvascular complications in diabetes, providing a potential target for therapeutic approaches. This study tested the hypothesis that a proangiogenic environment can augment diabetes-induced deficiencies in endothelial cell angiogenic and biomechanical responses. Endothelial responses were quantified for two models of diabetic conditions: 1) an in vitro acute and chronic hyperglycemia where normal cardiac endothelial cells were exposed to high-glucose media, and 2) an in vivo chronic diabetes model where the cells were isolated from rats with type I streptozotocin-induced diabetes. Capillary morphogenesis, VEGF and nitric oxide expression, cell morphology, orientation, proliferation, and apoptosis were determined for cells cultured on Matrigel or proangiogenic nanofiber hydrogel. The effects of biomechanical stimulation were assessed following cell exposure to uniaxial strain. The results demonstrate that diabetes alters cardiac endothelium angiogenic response, with differential effects of acute and chronic exposure to high-glucose conditions, consistent with the concept that endothelial cells may have a long-term “hyperglycemic memory” of the physiological environment in the body. Furthermore, endothelial cell exposure to strain significantly diminishes their angiogenic potential following strain application. Both diabetes and strain-associated deficiencies can be augmented in the proangiogenic nanofiber microenvironment. These findings may contribute to the development of novel approaches to reverse hyperglycemic memory of endothelium and enhance vascularization of the diabetic heart, where improved angiogenic and biomechanical responses can be the key factor to successful therapy.


2021 ◽  
Author(s):  
Josiane Fernandes da Silva ◽  
Juliano V Alves ◽  
Julio A Silva-Neto ◽  
Rafael Menezes Costa ◽  
Karla Bianca Neves ◽  
...  

Objective: The mechanisms involved in NOX5 activation in atherosclerotic processes are not completely understood.  This study tested the hypothesis that lysophosphatidylcholine (LPC), a proatherogenic component of oxLDL, induces endothelial calcium influx, which drives NOX5-dependent reactive oxygen species (ROS) production, oxidative stress, and endothelial cell dysfunction.  Approach: Human aortic endothelial cells (HAEC) were stimulated with LPC (10-5 M, for different time points).  Pharmacological inhibition of NOX5 (Melittin, 10-7 M) and NOX5 gene silencing (siRNA) were used to determine the role of NOX5-dependent ROS production in endothelial oxidative stress induced by LPC.  ROS production was determined by lucigenin assay and electron paramagnetic spectroscopy (EPR), calcium transients by Fluo4 fluorimetry, and NOX5 activity and protein expression by pharmacological assays and immunoblotting, respectively. Results: LPC increased ROS generation in endothelial cells at short (15 min) and long (4 h) stimulation times.  LPC-induced ROS was abolished by a selective NOX5 inhibitor and by NOX5 siRNA. NOX1/4 dual inhibition and selective NOX1 inhibition only decreased ROS generation at 4 h.  LPC increased HAEC intracellular calcium, important for NOX5 activation, and this was blocked by nifedipine and thapsigargin.  Bapta-AM, selective Ca2+ chelator, prevented LPC-induced ROS production.  NOX5 knockdown decreased LPC-induced ICAM-1 mRNA expression and monocyte adhesion to endothelial cells. Conclusion: These results suggest that NOX5, by mechanisms linked to increased intracellular calcium, is key to early LPC-induced endothelial oxidative stress and pro-inflammatory processes.  Since these are essential events in the formation and progression of atherosclerotic lesions, this study highlights an important role for NOX5 in atherosclerosis.


2019 ◽  
Author(s):  
Jing Wang ◽  
Zhichun Dong ◽  
Liying Lou

Abstract Background: MiR-145 is involved in insulin resistance (IR) in liver cells, but its effects in human umbilical vein endothelial cells (HUVECs) induced by IR remains unclear. This study took this as the starting point, aiming to find a potential target for the treatment of related disease. Methods: HUVECs were respectively treated with glucose of 15, 30, 45 mmol/L, or insulin of 1, 2, 3, 4, 5 μmol/L on the basis of high-glucose (33.3 mmol/L). MiR-145 mimics and miR-145 inhibitor were severally transfected into HUVECs with or without IR (4 μmol/L insulin + high-glucose). Quantitative real-time polymerase chain reaction (qRT-PCR) assay determined the miR-145 expression in HUVECs after treatment and transfection. The glucose consumption and glycogen contents of cells were appraised by glucose oxidase-peroxidase and anthranone-sulfuric acid methods, respectively. The apoptotic rates were ascertained using the flow cytometry. The expressions of apoptosis-related indicators Bcl-2 and Bax were analyzed by western blot (WB) and qRT-PCR assays. Results: The expression of miR-145 was increased in IR models and incremental glucose concentrations. The glucose consumption and glycogen content were down-regulated in IR-induced HUVECs, which were enhanced by over-expressed miR-145 but reversed by down-regulation. Moreover, over-expression of miR-145 aggravated the apoptosis of IR-induced HUVECs, while the inhibition of miR-145 had a completely opposite effect. Accordingly, up-regulated miR-145 obviously reduced Bcl-2 level and enhanced Bax expression in IR models, which was contrary to the down-regulated miR-145. Conclusion: Down-regulated miR-145 rescued IR in endothelial cells, which might be a conceivable treatment for IR of endothelial cells.


2019 ◽  
Vol 20 (10) ◽  
pp. 2427 ◽  
Author(s):  
Maayan Waldman ◽  
Vadim Nudelman ◽  
Asher Shainberg ◽  
Romy Zemel ◽  
Ran Kornwoski ◽  
...  

Type 2 diabetes mellitus (DM2) leads to cardiomyopathy characterized by cardiomyocyte hypertrophy, followed by mitochondrial dysfunction and interstitial fibrosis, all of which are exacerbated by angiotensin II (AT). SIRT1 and its transcriptional coactivator target PGC-1α (peroxisome proliferator-activated receptor-γ coactivator), and heme oxygenase-1 (HO-1) modulates mitochondrial biogenesis and antioxidant protection. We have previously shown the beneficial effect of caloric restriction (CR) on diabetic cardiomyopathy through intracellular signaling pathways involving the SIRT1–PGC-1α axis. In the current study, we examined the role of HO-1 in diabetic cardiomyopathy in mice subjected to CR. Methods: Cardiomyopathy was induced in obese diabetic (db/db) mice by AT infusion. Mice were either fed ad libitum or subjected to CR. In an in vitro study, the reactive oxygen species (ROS) level was determined in cardiomyocytes exposed to different glucose levels (7.5–33 mM). We examined the effects of Sn(tin)-mesoporphyrin (SnMP), which is an inhibitor of HO activity, the HO-1 inducer cobalt protoporphyrin (CoPP), and the SIRT1 inhibitor (EX-527) on diabetic cardiomyopathy. Results: Diabetic mice had low levels of HO-1 and elevated levels of the oxidative marker malondialdehyde (MDA). CR attenuated left ventricular hypertrophy (LVH), increased HO-1 levels, and decreased MDA levels. SnMP abolished the protective effects of CR and caused pronounced LVH and cardiac metabolic dysfunction represented by suppressed levels of adiponectin, SIRT1, PPARγ, PGC-1α, and increased MDA. High glucose (33 mM) increased ROS in cultured cardiomyocytes, while SnMP reduced SIRT1, PGC-1α levels, and HO activity. Similarly, SIRT1 inhibition led to a reduction in PGC-1α and HO-1 levels. CoPP increased HO-1 protein levels and activity, SIRT1, and PGC-1α levels, and decreased ROS production, suggesting a positive feedback between SIRT1 and HO-1. Conclusion: These results establish a link between SIRT1, PGC-1α, and HO-1 signaling that leads to the attenuation of ROS production and diabetic cardiomyopathy. CoPP mimicked the beneficial effect of CR, while SnMP increased oxidative stress, aggravating cardiac hypertrophy. The data suggest that increasing HO-1 levels constitutes a novel therapeutic approach to protect the diabetic heart. Brief Summary: CR attenuates cardiomyopathy, and increases HO-1, SIRT activity, and PGC-1α protein levels in diabetic mice. High glucose reduces adiponectin, SIRT1, PGC1-1α, and HO-1 levels in cardiomyocytes, resulting in oxidative stress. The pharmacological activation of HO-1 activity mimics the effect of CR, while SnMP increased oxidative stress and cardiac hypertrophy. These data suggest the critical role of HO-1 in protecting the diabetic heart.


Sign in / Sign up

Export Citation Format

Share Document