Abstract 90: Akt Mediated Mitochondrial Dysfunction Involves Mitochondrial Endothelial Nitric Oxide Synthase Translocation

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Ruslan Rafikov ◽  
Olga Rafikova ◽  
Xutong Sun ◽  
Saurabh Aggarwal ◽  
Stephen M Black

Pulmonary arterial hypertension (PH) is a fatal disease characterized by uncontrolled pulmonary vascular cell proliferation. Mitochondrial dysfunction (MD) of pulmonary endothelial cells (EC) was shown to be one of the primary events implicated into proliferative, apoptosis resistant cell phenotype. However, the particular molecular mechanisms responsible for MD remain unclear. The development of PH in patients is associated with severe nitrosative stress, leading to post-translational protein modifications. Thus, we have recently found that Akt is susceptible to nitration of tyrosine Y350 residue. We hypothesize that nitration of Akt induces activation of Akt signaling and contributes to the development of MD. Nitrosative stress in EC was initiated by eNOS uncoupler ADMA or peroxynitrite donor SIN-1 and resulted in significant Akt nitration and activation (1.5±0.1 fold control; p=0.007; N=3-4), as well as activation of anti-apoptotic (BAD phosphorylation), and proliferative (mTOR phosphorylation) signaling cascades. Increased Akt signaling induced phosphorylation of eNOS at serine S615 (1.47±0.08 fold control, p=0.005, N=3) and S1177 (0.22±0.04 vs. 0.47±0.07, p=0.029, N=3). Phosphorylation of eNOS resulted in its translocation to mitochondria (3± 0.3 fold control; p=0.003; N=3) which, in turn, significantly decreased basal mitochondrial respiration (oxygen consumption rate, pmol/min: untransfected cells 1022±96 vs. mitochondrial targeted phospho-mimetic eNOS mutants S615D 102±9 and S1177D 117±7, p<0.001, N=4-6), perhaps due to previously reported inhibitory effect of NO on mitochondrial respiratory chain. Finally, we have created an anti-oxidant conjugated “shielding” peptide that, by shielding the Akt nitration site, is capable to prevent Akt activation. Indeed, pre-treatment with shielding peptide (100μg/ml, 30min) completely abolished SIN-1 induced nitration of Akt in EC. We conclude that Akt nitration may contribute to proliferative/apoptosis resistant EC phenotype through pathological activation of Akt signaling and Akt mediated mitochondrial eNOS translocation. Besides, our novel shielding peptide based therapeutic strategy opens new avenues in MD prevention.

2019 ◽  
Vol 25 (28) ◽  
pp. 3057-3073 ◽  
Author(s):  
Kobra B. Juybari ◽  
Azam Hosseinzadeh ◽  
Habib Ghaznavi ◽  
Mahboobeh Kamali ◽  
Ahad Sedaghat ◽  
...  

Optic neuropathies refer to the dysfunction or degeneration of optic nerve fibers caused by any reasons including ischemia, inflammation, trauma, tumor, mitochondrial dysfunction, toxins, nutritional deficiency, inheritance, etc. Post-mitotic CNS neurons, including retinal ganglion cells (RGCs) intrinsically have a limited capacity for axon growth after either trauma or disease, leading to irreversible vision loss. In recent years, an increasing number of laboratory evidence has evaluated optic nerve injuries, focusing on molecular signaling pathways involved in RGC death. Trophic factor deprivation (TFD), inflammation, oxidative stress, mitochondrial dysfunction, glutamate-induced excitotoxicity, ischemia, hypoxia, etc. have been recognized as important molecular mechanisms leading to RGC apoptosis. Understanding these obstacles provides a better view to find out new strategies against retinal cell damage. Melatonin, as a wide-spectrum antioxidant and powerful freeradical scavenger, has the ability to protect RGCs or other cells against a variety of deleterious conditions such as oxidative/nitrosative stress, hypoxia/ischemia, inflammatory processes, and apoptosis. In this review, we primarily highlight the molecular regenerative and degenerative mechanisms involved in RGC survival/death and then summarize the possible protective effects of melatonin in the process of RGC death in some ocular diseases including optic neuropathies. Based on the information provided in this review, melatonin may act as a promising agent to reduce RGC death in various retinal pathologic conditions.


2006 ◽  
Vol 85 (10) ◽  
pp. 900-904 ◽  
Author(s):  
C.-K. Park ◽  
H.Y. Li ◽  
K.-Y. Yeon ◽  
S.J. Jung ◽  
S.-Y. Choi ◽  
...  

Although eugenol is widely used in dentistry, little is known about the molecular mechanisms responsible for its anesthetic properties. In addition to calcium channels, recently demonstrated by our group, there could be another molecular target for eugenol. Using a whole-cell patch-clamp technique, we investigated the effect of eugenol on voltage-gated sodium channel currents ( I Na) in rat dental primary afferent neurons identified by retrograde labeling with a fluorescent dye in maxillary molars. Eugenol inhibited action potentials and I Na in both capsaicin-sensitive and capsaicin-insensitive neurons. The pre-treatment with capsazepine, a competitive antagonist of transient receptor potential vanilloid 1 (TRPV1), failed to block the inhibitory effect of eugenol on I Na, suggesting no involvement of TRPV1. Two types of I Na, tetrodotoxin (TTX)-resistant and TTX-sensitive I Na, were inhibited by eugenol. Our results demonstrated that eugenol inhibits I Na in a TRPV1-independent manner. We suggest that I Na inhibition by eugenol contributes to its analgesic effect.


2018 ◽  
Vol 25 (18) ◽  
pp. 2122-2132 ◽  
Author(s):  
Ana Marchionatti ◽  
Maria Rivoira ◽  
Valeria Rodriguez ◽  
Adriana Perez ◽  
Nori Tolosa de Talamoni

Background: Bile acids (BAs) are among the main components of bile. Lately, they are also considered important signaling molecules, not only by regulating their own synthesis, but also having a role in several metabolic diseases. Objective: In this review we focus on the effect of sodium deoxycholate (NaDOC), ursodeoxycholic (UDCA) and litocholic (LCA) acids and their combination upon the intestinal Ca2+ absorption. To make clear the actions of those BAs on this physiological process, an overview of current information about the mechanisms by which the intestinal Ca2+ occurs is described. Methods: The PubMed database was searched until 2017, using the keywords bile acids, NaDOC, UDCA and LCA and redox state, apoptosis, autophagy and intestinal Ca2+ absorption. Results: The modulation of redox state, apoptosis and autophagy are mechanisms that are involved in the action of BAs on intestinal Ca2+ absorption. Although the mechanisms are still not completely understood, we provide the latest knowledge regarding the effect of BAs on intestinal Ca2+ absorption. Conclusion: The response of the intestine to absorb Ca2+ is affected by BAs, but it is different according to the type and dose of BA. When there is a single administration, NaDOC has an inhibitory effect, UDCA is an stimulator whereas LCA does not have any influence. However, the combination of BAs modifies the response. Either UDCA or LCA protects the intestine against the oxidative injury caused by NaDOC by blocking the oxidative/nitrosative stress, apoptosis and autophagy.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
David Protter ◽  
Charmaine Lang ◽  
Antony A. Cooper

Parkinson’s Disease (PD) is a complex, chronic, progressive, and debilitating neurodegenerative disorder. Neither a cure nor effective long-term therapy exist and the lack of knowledge of the molecular mechanisms responsible for PD development is a major impediment to therapeutic advances. The protein αSynuclein is a central component in PD pathogenesis yet its cellular targets and mechanism of toxicity remains unknown. Mitochondrial dysfunction is also a common theme in PD patients and this review explores the strong possibility that αSynuclein and mitochondrial dysfunction have an inter-relationship responsible for underlying the disease pathology. Amplifying cycles of mitochondrial dysfunction and αSynuclein toxicity can be envisaged, with either being the disease-initiating factor yet acting together during disease progression. Multiple potential mechanisms exist in which mitochondrial dysfunction and αSynuclein could interact to exacerbate their neurodegenerative properties. Candidates discussed within this review include autophagy, mitophagy, mitochondrial dynamics/fusion/fission, oxidative stress and reactive oxygen species, endoplasmic reticulum stress, calcium, nitrosative stress and αSynuclein Oligomerization.


2021 ◽  
Author(s):  
Jixiang Yuan ◽  
Feihong Lin ◽  
Lichen Chen ◽  
Weikang Chen ◽  
Xiaodong Pan ◽  
...  

Abstract Lipoxin A4 (LXA4) has been shown to have anti-inflammatory activity, but its underlying molecular mechanisms are not clear. Herein, our team investigated the potential role of LXA4 in the macrophage polarisation and elucidated its possible molecular mechanism. The RAW264.7 macrophage cell line was subjected to pre-treatment with LXA4 with or without lipopolysaccharides (LPS) and interleukin-4 (IL-4). In cultured macrophages, LXA4 inhibits LPS-induced inflammatory polarization, thereby decreasing the release of proinflammation cell factors (IL-1β, IL-6, TNF-α) and increasing the release of antiinflammation cytokines (IL-4 and IL-10). Notably, the inhibitory effect of LXA4 on inflammation macrophage polarisation was related to the downregulation of p-NF-κB p65 and IRF5 activity, thereby downregulating LPS-induced phenotypic and functional polarization of macrophage M1 via the FPR2/IRF5 signaling pathway. Moreover, LXA4 also promotes the IL-4-induced polarization of M2 macrophages by promoting the FPR2/IRF4 signaling pathway. Therefore, Lipoxin A4 regulates M1/M2 polarization of macrophages via FPR2-IRF pathway.


1983 ◽  
Vol 49 (02) ◽  
pp. 096-101 ◽  
Author(s):  
V C Menys ◽  
J A Davies

SummaryPlatelet adhesion to rabbit aortic subendothelium or collagen-coated glass was quantitated in a rotating probe device by uptake of radio-labelled platelets. Under conditions in which aspirin had no effect, dazoxiben, a selective inhibitor of thromboxane synthetase, reduced platelet adhesion to aortic subendothelium by about 40% but did not affect adhesion to collagen-coated glass. Pre-treatment of aortic segments with 15-HPETE, a selective inhibitor of PGI2-synthetase, abolished the inhibitory effect of dazoxiben on adhesion. Concentrations of 6-oxo-PGFlα in the perfusate were raised in the presence of dazoxiben alone, and following addition of thrombin (10 units/ml) there was a 2-3 fold increase in concentration. Perfusion of damaged aorta with platelets labelled with (14C)-arachidonic acid in the presence of thrombin and dazoxiben resulted in the appearance of (14C)-labelled-6-oxo-PGFiα. Inhibition of thromboxane synthetase limits platelet adhesion probably by promoting vascular synthesis of PGI2 from endoperoxides liberated from adherent platelets, which subsequently promotes detachment of cells from the surface.


Author(s):  
Md. Junaid ◽  
Yeasmin Akter ◽  
Syeda Samira Afrose ◽  
Mousumi Tania ◽  
Md. Asaduzzaman Khan

Background: AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to the carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. Objective: In this review article, we have interpreted the role of AKT signaling pathways in cancer and natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanism. Method: We have collected the updated information and data on AKT, their role in cancer and inhibitory effect of TQ in AKT signaling pathway from google scholar, PubMed, Web of Science, Elsevier, Scopus and many more. Results: There are many drugs already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. Conclusion: This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ’s future as a cancer therapeutic drug.


2020 ◽  
Vol 14 (1) ◽  
pp. 36-51 ◽  
Author(s):  
George L. da Silva Oliveira ◽  
José C. Correia L. da Silva ◽  
Ana P. dos Santos C. L da Silva ◽  
Chistiane M. Feitosa ◽  
Fernanda R. de Castro Almeida

Background: Central nervous system disorders such as anxiety, depression and epilepsy are characterized by sharing several molecular mechanisms in common and the involvement of the L-arginine/NO pathway in neurobehavioral studies with β-caryophyllene is still little discussed. Objectives: One of the objectives of the present study was to demonstrate the anxiolytic behavioral effect of β-caryophyllene (β-CBP) in female Swiss mice, as well as to investigate the molecular mechanisms underlying the results obtained. Methods: This study evaluated the neurobehavioral effects of β-CBP using the open field test, rota-rod test, elevated plus maze test, novelty suppressed feeding test, tail suspension test and forced swim test, as well as pilocarpine, pentylenetetrazole and isoniazid-induced epileptic seizure models. Results:: The results demonstrated that the neuropharmacological activities of β-CBP may involve benzodiazepine/GABAergic receptors, since the pre-treatment of β-CBP (200 mg/kg) associated with flumazenil (5 mg/kg, benzodiazepine receptor antagonist) and bicuculline (1 mg/kg, selective GABAA receptor antagonist) reestablished the anxiety parameters in the elevated plus-maze test, as well as the results of reduced latency to consume food in the novelty suppressed feeding test. In addition to benzodiazepine/GABAergic receptors, the neuropharmacological properties of β-CBP may be related to inhibition of nitric oxide synthesis, since pre-treatment with L-arginine (500- 750 mg/kg) reversed significantly the anxiolytic, antidepressant and anticonvulsant activities of β-CBP. Conclusion: The results obtained provide additional support in understanding the neuromolecular mechanisms underlying the anxiolytic, antidepressant and anticonvulsive properties of β-CBP in female Swiss mice.


2004 ◽  
Vol 101 (2) ◽  
pp. 390-398 ◽  
Author(s):  
Takashi Kawano ◽  
Shuzo Oshita ◽  
Akira Takahashi ◽  
Yasuo Tsutsumi ◽  
Yoshinobu Tomiyama ◽  
...  

Background Sarcolemmal adenosine triphosphate-sensitive potassium (KATP) channels in the cardiovascular system may be involved in bupivacaine-induced cardiovascular toxicity. The authors investigated the effects of local anesthetics on the activity of reconstituted KATP channels encoded by inwardly rectifying potassium channel (Kir6.0) and sulfonylurea receptor (SUR) subunits. Methods The authors used an inside-out patch clamp configuration to investigate the effects of bupivacaine, levobupivacaine, and ropivacaine on the activity of reconstituted KATP channels expressed in COS-7 cells and containing wild-type, mutant, or chimeric SURs. Results Bupivacaine inhibited the activities of cardiac KATP channels (IC50 = 52 microm) stereoselectively (levobupivacaine, IC50 = 168 microm; ropivacaine, IC50 = 249 microm). Local anesthetics also inhibited the activities of channels formed by the truncated isoform of Kir6.2 (Kir6.2 delta C36) stereoselectively. Mutations in the cytosolic end of the second transmembrane domain of Kir6.2 markedly decreased both the local anesthetics' affinity and stereoselectivity. The local anesthetics blocked cardiac KATP channels with approximately eightfold higher potency than vascular KATP channels; the potency depended on the SUR subtype. The 42 amino acid residues at the C-terminal tail of SUR2A, but not SUR1 or SUR2B, enhanced the inhibitory effect of bupivacaine on the Kir6.0 subunit. Conclusions Inhibitory effects of local anesthetics on KATP channels in the cardiovascular system are (1) stereoselective: bupivacaine was more potent than levobupivacaine and ropivacaine; and (2) tissue specific: local anesthetics blocked cardiac KATP channels more potently than vascular KATP channels, via the intracellular pore mouth of the Kir6.0 subunit and the 42 amino acids at the C-terminal tail of the SUR2A subunit, respectively.


Author(s):  
Anna Sobiepanek ◽  
Alessio Paone ◽  
Francesca Cutruzzolà ◽  
Tomasz Kobiela

AbstractMelanoma is the most fatal form of skin cancer, with increasing prevalence worldwide. The most common melanoma genetic driver is mutation of the proto-oncogene serine/threonine kinase BRAF; thus, the inhibition of its MAP kinase pathway by specific inhibitors is a commonly applied therapy. However, many patients are resistant, or develop resistance to this type of monotherapy, and therefore combined therapies which target other signaling pathways through various molecular mechanisms are required. A possible strategy may involve targeting cellular energy metabolism, which has been recognized as crucial for cancer development and progression and which connects through glycolysis to cell surface glycan biosynthetic pathways. Protein glycosylation is a hallmark of more than 50% of the human proteome and it has been recognized that altered glycosylation occurs during the metastatic progression of melanoma cells which, in turn facilitates their migration. This review provides a description of recent advances in the search for factors able to remodel cell metabolism between glycolysis and oxidative phosphorylation, and of changes in specific markers and in the biophysical properties of cells during melanoma development from a nevus to metastasis. This development is accompanied by changes in the expression of surface glycans, with corresponding changes in ligand-receptor affinity, giving rise to structural features and viscoelastic parameters particularly well suited to study by label-free biophysical methods.


Sign in / Sign up

Export Citation Format

Share Document