Abstract T MP46: Stroke-Related Neuroplasticity During Steering of Human Gait

Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Caroline Paquette ◽  
Jean-Paul Soucy

Background: The risk of falling is higher in stroke survivors than among the general population. These falls are more frequent during walking and transfers or during turning. The neuronal substrates involved in steering of locomotion are poorly understood due to methodological limitations in quantifying brain activations during whole-body movements. Thus, no data is currently available to study the mechanisms of post-stroke brain plasticity for steering of gait. This study tested the hypothesis that stroke-induced neuroplastic changes for steering of gait can be quantified using 18F- fluorodesoxy-glucose (18F-FDG) Positron Emission Tomography (PET) in-vivo in humans Methods: PET imaging with 18F-FDG tracer was used to quantify cerebral glucose metabolism (CMRGlc) during two locomotor tasks (straight walking and turning) measured on separate days. Immediately prior to each walking task, a 5 mCi bolus of 18F-FDG was injected. Subjects walked for 40 minutes (duration of 18F-FDG uptake). Subjects were scanned on an ECAT HR+ scan (20min emission followed by 10min transmission) within 10 minutes of completing the walking task, well within reaching the 2h half-life of 18F. Images obtained during straight walking were subtracted from the ones acquired during steering Results: Subjects post-stroke showed an asymmetrical pattern of CMRGlc in sensorimotor areas and superior parietal lobule where the affected hemisphere shows no increase in CMRGlc. Differences between groups were also observed in the cerebellum where CMRGlc was increased in the vermis for controls, an area predominant for the control of trunk and gait. Stroke subjects, in contrast, showed increased CMRGlc in the hemishperes, associated with goal-directed leg movements. Conclusions: Neuroplasticity in complex locomotor tasks such as steering can be quantified using 18F-FDG PET in subjects post-stroke. This study showed that changes affect several brain regions remote to the infarct. Understanding stroke-related changes in brain activity during steering of locomotion is crucial for improving rehabilitative strategies to minimize falls and injuries in stroke survivors.

2019 ◽  
Vol 7 (3A) ◽  
Author(s):  
Bruno Melo Mendes ◽  
Bruno Machado Trindade ◽  
Telma Cristina Ferreira Fonseca ◽  
Tarcisio Passos Ribeiro de Campos

The production 18F-FDG for positron emission tomography (PET) has consistently increased over the past two decades. The risk of internal contamination at 18F-FDG production facilities exists. A setup for evaluation of the 18F-FDG activity incorporated into the OEW brain, called Head Counting System (HCS), was presented in previous works. In this study, the whole body counter setup (WBC) was evaluated for monitoring 18F incorporations. The Monte Carlo Virtual Software (VMC in-vivo) and the MCNPx code were used to assess the system calibration coefficient (CC). Three 18F distributions were simulated: i) uniformly distributed in soft tissue (UDST); ii) Na18F biodistribution (NAFB); and iii) 18F-FDG biodistribution (FDGB). The calibration coefficient of WBC was compared to the current head counting system CC under the same biodistribution conditions. The ICRP male reference voxelized phantoms (RCP_AM) was used in the simulations. The results showed that the WBC setup was more efficient than the head counter for all the studied 18F distributions: UDST = 1060 %, FDGB = 488 % and NAFB = 340 %. Despite this, especially for 18F-FDG, the possibility of bladder voiding before measurement can lead to considerable uncertainties when the WBC setup is used.  On the other hand, bladder activity does not show great influence the calibration coefficient of the head counting system. Future work will evaluate the WBC sources of uncertainties in the measurement of 18F incorporated activity.


2018 ◽  
Vol 29 (9) ◽  
pp. 4006-4016 ◽  
Author(s):  
Tomi Karjalainen ◽  
Kerttu Seppälä ◽  
Enrico Glerean ◽  
Henry K Karlsson ◽  
Juha M Lahnakoski ◽  
...  

Abstract Emotions can be characterized by dimensions of arousal and valence (pleasantness). While the functional brain bases of emotional arousal and valence have been actively investigated, the neuromolecular underpinnings remain poorly understood. We tested whether the opioid and dopamine systems involved in reward and motivational processes would be associated with emotional arousal and valence. We used in vivo positron emission tomography to quantify μ-opioid receptor and type 2 dopamine receptor (MOR and D2R, respectively) availability in brains of 35 healthy adult females. During subsequent functional magnetic resonance imaging carried out to monitor hemodynamic activity, the subjects viewed movie scenes of varying emotional content. Arousal and valence were associated with hemodynamic activity in brain regions involved in emotional processing, including amygdala, thalamus, and superior temporal sulcus. Cerebral MOR availability correlated negatively with the hemodynamic responses to arousing scenes in amygdala, hippocampus, thalamus, and hypothalamus, whereas no positive correlations were observed in any brain region. D2R availability—here reliably quantified only in striatum—was not associated with either arousal or valence. These results suggest that emotional arousal is regulated by the MOR system, and that cerebral MOR availability influences brain activity elicited by arousing stimuli.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 287
Author(s):  
Maria Isabella Donegani ◽  
Alberto Miceli ◽  
Matteo Pardini ◽  
Matteo Bauckneht ◽  
Silvia Chiola ◽  
...  

We aimed to evaluate the brain hypometabolic signature of persistent isolated olfactory dysfunction after SARS-CoV-2 infection. Twenty-two patients underwent whole-body [18F]-FDG PET, including a dedicated brain acquisition at our institution between May and December 2020 following their recovery after SARS-Cov2 infection. Fourteen of these patients presented isolated persistent hyposmia (smell diskettes olfaction test was used). A voxel-wise analysis (using Statistical Parametric Mapping software version 8 (SPM8)) was performed to identify brain regions of relative hypometabolism in patients with hyposmia with respect to controls. Structural connectivity of these regions was assessed (BCB toolkit). Relative hypometabolism was demonstrated in bilateral parahippocampal and fusiform gyri and in left insula in patients with respect to controls. Structural connectivity maps highlighted the involvement of bilateral longitudinal fasciculi. This study provides evidence of cortical hypometabolism in patients with isolated persistent hyposmia after SARS-Cov2 infection. [18F]-FDG PET may play a role in the identification of long-term brain functional sequelae of COVID-19.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sébastien Goutal ◽  
Martine Guillermier ◽  
Guillaume Becker ◽  
Mylène Gaudin ◽  
Yann Bramoullé ◽  
...  

Abstract Background Positron Emission Tomography (PET) imaging of the Synaptic Vesicle glycoprotein (SV) 2A is a new tool to quantify synaptic density. [18F]UCB-H was one of the first promising SV2A-ligands to be labelled and used in vivo in rodent and human, while limited information on its pharmacokinetic properties is available in the non-human primate. Here, we evaluate the reliability of the three most commonly used modelling approaches for [18F]UCB-H in the non-human cynomolgus primate, adding the coupled fit of the non-displaceable distribution volume (VND) as an alternative approach to improve unstable fit. The results are discussed in the light of the current state of SV2A PET ligands. Results [18F]UCB-H pharmacokinetic data was optimally fitted with a two-compartment model (2TCM), although the model did not always converge (large total volume of distribution (VT) or large uncertainty of the estimate). 2TCM with coupled fit K1/k2 across brain regions stabilized the quantification, and confirmed a lower specific signal of [18F]UCB-H compared to the newest SV2A-ligands. However, the measures of VND and the influx parameter (K1) are similar to what has been reported for other SV2A ligands. These data were reinforced by displacement studies using [19F]UCB-H, demonstrating only 50% displacement of the total [18F]UCB-H signal at maximal occupancy of SV2A. As previously demonstrated in clinical studies, the graphical method of Logan provided a more robust estimate of VT with only a small bias compared to 2TCM. Conclusions Modeling issues with a 2TCM due to a slow component have previously been reported for other SV2A ligands with low specific binding, or after blocking of specific binding. As all SV2A ligands share chemical structural similarities, we hypothesize that this slow binding component is common for all SV2A ligands, but only hampers quantification when specific binding is low.


Author(s):  
Erik Nutma ◽  
Kelly Ceyzériat ◽  
Sandra Amor ◽  
Stergios Tsartsalis ◽  
Philippe Millet ◽  
...  

AbstractThe 18 kDa translocator protein (TSPO) is a highly conserved protein located in the outer mitochondrial membrane. TSPO binding, as measured with positron emission tomography (PET), is considered an in vivo marker of neuroinflammation. Indeed, TSPO expression is altered in neurodegenerative, neuroinflammatory, and neuropsychiatric diseases. In PET studies, the TSPO signal is often viewed as a marker of microglial cell activity. However, there is little evidence in support of a microglia-specific TSPO expression. This review describes the cellular sources and functions of TSPO in animal models of disease and human studies, in health, and in central nervous system diseases. A discussion of methods of analysis and of quantification of TSPO is also presented. Overall, it appears that the alterations of TSPO binding, their cellular underpinnings, and the functional significance of such alterations depend on many factors, notably the pathology or the animal model under study, the disease stage, and the involved brain regions. Thus, further studies are needed to fully determine how changes in TSPO binding occur at the cellular level with the ultimate goal of revealing potential therapeutic pathways.


2021 ◽  
Vol 5 (1) ◽  
pp. 1151-1160
Author(s):  
A.S. Lukashevich ◽  

Purpose. The purpose of the article is to evaluate the diagnostic significance of positron emission tomography / computed tomography with 18F -fluorodeoxyglucose (18F -FDG PET/CT) for the diagnosis of prosthetic endocarditis. Methods of research. The study included 82 patients with suspected prosthetic endocarditis in accordance with the criteria proposed by Duke University [1-5]. The patients received hospital treatment at the State Institution RSPC "Cardiology" from January 2016 to March 2021. The study was of a prospective, non-randomized, single-center cohort design. The duration of the monitor period was 12 months from the moment of patients’ inclusion in the study. Whole-body positron emission tomography / computed tomography (PET/CT) examinations were performed in 82 patients. 27 patients were selected for surgical treatment. Conservative treatment group included 16 patients. 27 patients were selected into the observation group, they were suspected to have prosthetic heart valve infection in the primary referral and underwent PET/CT scanning, according to which the diagnosis of prosthetic endocarditis was excluded. The event under the study did not develop in this group during the year of observation. Results and conclusion. The history of infective endocarditis was not statistically significant and did not increase the risk of developing prosthetic endocarditis in the sample presented. The Duke criteria are less reliable in establishing the diagnosis of prosthetic endocarditis. The median number of days from the date of the first prosthesis implantation to the onset of prosthetic endocarditis was about 4 years. This study revealed that the development of the infectious process in the area of the prosthesis was noted in a more distant postoperative period compared to literature data. Histological confirmation of infection was noted in 100% (27 patients) of cases in reoperated patients. The presence of a more formidable complication such as valve ring abscess located mainly in the projection of the aortic valve ring was quite common in both groups. Presepsin and Interleukin-6 have a statistically significant (U = 394,50 p = 0,01 and U = 94,50 p = 0.004) value in the prognosis of prosthetic endocarditis. Considering the data obtained from ROC analysis, it can be said that the cut-off point at which it is possible to diagnose prosthetic endocarditis based on PETCT is 2.85. The presented methods for the interpretation of whole-body FDG-PET/CT images of patients with suspected infectious complications after cardiac surgery, as well as with the presence of prosthetic endocarditis, show high sensitivity and specificity.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hans-Jonas Meyer ◽  
Sandra Purz ◽  
Osama Sabri ◽  
Alexey Surov

Multimodal imaging has been increasingly used in oncology, especially in cervical cancer. By using a simultaneous positron emission (PET) and magnetic resonance imaging (MRI, PET/MRI) approach, PET and MRI can be obtained at the same time which minimizes motion artefacts and allows an exact imaging fusion, which is especially important in anatomically complex regions like the pelvis. The associations between functional parameters from MRI and 18F-FDG-PET reflecting different tumor aspects are complex with inconclusive results in cervical cancer. The present study correlates histogram analysis and 18F-FDG-PET parameters derived from simultaneous FDG-PET/MRI in cervical cancer. Overall, 18 female patients (age range: 32–79 years) with histopathologically confirmed squamous cell cervical carcinoma were retrospectively enrolled. All 18 patients underwent a whole-body simultaneous 18F-FDG-PET/MRI, including diffusion-weighted imaging (DWI) using b-values 0 and 1000 s/mm2. Apparent diffusion coefficient (ADC) histogram parameters included several percentiles, mean, min, max, mode, median, skewness, kurtosis, and entropy. Furthermore, mean and maximum standardized uptake values (SUVmean and SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were estimated. No statistically significant correlations were observed between SUVmax or SUVmean and ADC histogram parameters. TLG correlated inversely with p25 (r=−0.486,P=0.041), p75 (r=−0.490,P=0.039), p90 (r=−0.513,P=0.029), ADC median (r=−0.497,P=0.036), and ADC mode (r=−0.546,P=0.019). MTV also showed significant correlations with several ADC parameters: mean (r=−0.546,P=0.019), p10 (r=−0.473,P=0.047), p25 (r=−0.569,P=0.014), p75 (r=−0.576,P=0.012), p90 (r=−0.585,P=0.011), ADC median (r=−0.577,P=0.012), and ADC mode (r=−0.597,P=0.009). ADC histogram analysis and volume-based metabolic 18F-FDG-PET parameters are related to each other in cervical cancer.


2021 ◽  
pp. 0271678X2110477
Author(s):  
Laura Michiels ◽  
Nathalie Mertens ◽  
Liselot Thijs ◽  
Ahmed Radwan ◽  
Stefan Sunaert ◽  
...  

Functional alterations after ischemic stroke have been described with Magnetic Resonance Imaging (MRI) and perfusion Positron Emission Tomography (PET), but no data on in vivo synaptic changes exist. Recently, imaging of synaptic density became available by targeting synaptic vesicle protein 2 A, a protein ubiquitously expressed in all presynaptic nerve terminals. We hypothesized that in subacute ischemic stroke loss of synaptic density can be evaluated with 11C-UCB-J PET in the ischemic tissue and that alterations in synaptic density can be present in brain regions beyond the ischemic core. We recruited ischemic stroke patients to undergo 11C-UCB-J PET/MR imaging 21 ± 8 days after stroke onset to investigate regional 11C-UCB-J SUVR (standardized uptake value ratio). There was a decrease (but residual signal) of 11C-UCB-J SUVR within the lesion of 16 stroke patients compared to 40 healthy controls (ratiolesion/controls = 0.67 ± 0.28, p = 0.00023). Moreover, 11C-UCB-J SUVR was lower in the non-lesioned tissue of the affected hemisphere compared to the unaffected hemisphere (ΔSUVR = −0.17, p = 0.0035). The contralesional cerebellar hemisphere showed a lower 11C-UCB-J SUVR compared to the ipsilesional cerebellar hemisphere (ΔSUVR = −0.14, p = 0.0048). In 8 out of 16 patients, the asymmetry index suggested crossed cerebellar diaschisis. Future research is required to longitudinally study these changes in synaptic density and their association with outcome.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Chase W Kessinger ◽  
Ahmed Tawakol ◽  
Gregory R Wojtkiewicz ◽  
Peter K Henke ◽  
Ralph Weissleder ◽  
...  

Objective: While venous thrombosis (VT)-induced inflammation facilitates thrombus resolution, inflammation causes vein wall scarring (VWS). Recently, statins have shown to improve VT resolution and reduce VT inflammatory components. In this study, we hypothesized that early VT inflammation detected by 18F-FDG positron emission tomography/computed tomography (PET/CT) could predict subsequent late stage VWS, and would be attenuated by statin therapy. Methods: Stasis VT was induced in 8-12 week old male C57BL/6 mice (n=31) in either the right jugular vein (n=13) or inferior vena cava (IVC,n=18). Animals in the IVC VT cohort were randomized to statin (n=8) or control (n=10) treatment. Statin, rosuvastatin (5mg/kg), was administered by oral gavage, daily starting 24 hours prior to VT induction; control mice received saline. All mice underwent survival FDG-PET/CT venography imaging on day 2. FDG inflammation signals (standard uptake value=SUV) were measured in the thrombosed vein and compared to the sham-operated venous segments or treatment control. On day 14, mice were sacrificed and VT tissue was resected. Picrosirius red staining allowed measurement of collagen and vein wall thickness in VT sections. Results: FDG-PET/CT at day 2 revealed increased inflammation signal activity in jugular VT (SUV 1.43 ± 0.3 VT vs. 0.81 ± 0.3 contralateral vein, p<0.0001). Statin-treated mice showed a trend of decreased inflammation signal at day 2 in the IVC VT models (SUV 1.02 ± 0.1 statin VT vs. 1.42 ± 0.2 control VT, p=0.07). Day 14 histological analysis revealed significantly reduced vein wall injury in statin-treated animals (thickness, 32±9.4 μm statin; vs. 56.2±14.7 μm control, p=0.02). Day 2 FDG-PET inflammation in VT correlated positively with the magnitude of day 14 VWS (jugular VT, Spearman r=0.62, p=0.02; IVC VT r=0.74, p<0.001, respectively). Conclusions: Quantitative FDG-PET/CT imaging demonstrates that early in vivo VT inflammation predicts subsequent VWS, a driver of post-thrombotic syndrome (PTS). The overall findings strengthen: (i) the link between inflammation and PTS; (ii) the translational potential of FDG-PET inflammation to predict VWS and PTS; and (iii) the concept that statins and other anti-inflammatory therapies could reduce VWS and PTS.


Sign in / Sign up

Export Citation Format

Share Document