Abstract T P115: Sarcopenia and Physical Function in Chronic Stroke

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Alice S Ryan ◽  
Joseph Hartstein ◽  
Charlene Hafer-Macko ◽  
Frederick Ivey

Sarcopenia is defined as an age-related loss in skeletal lean muscle mass and strength and is as a leading contributor to the development of frailty. Stroke survivors have muscle atrophy in paretic (P) vs. nonparetic (P) legs that could contribute to whole body sarcopenia. The purpose of this study was to determine the sarcopenic index in a large population of chronic stroke survivors and compare this group to age, gender, and BMI-matched non-stroke controls. Chronic stroke survivors aged 40 to 84 yrs (n=180, 61% female, 59% African American, BMI: 29±1 kg/m 2 , X±SEM) with mild to moderate gait deficits underwent whole body DXA scans to assess sarcopenic index (appendicular lean mass/ht 2 ). The cutoffs for sarcopenia, by the European Working Group on Sarcopenia, were used and defined as a skeletal muscle index of <7.23 kg/m 2 in men and <5.67 kg/m 2 in women. In the entire group, the prevalence of sarcopenia in stroke survivors (13%) did not differ significantly from that of populations reported previously in the literature. In 61-70 year olds, 87% (n=63) had normal muscle mass and 13% (n=9) were sarcopenic. In 71-80 year olds, 79% (n=30) had normal skeletal muscle index and 21% (n=8) were sarcopenic. Stroke survivors (n=39) were matched with 39 controls on the basis of race, gender, age ±4 years and BMI±2.5 units. After matched pair analysis, 5.1% of the controls had sarcopenia while 12.8% of the control group were sarcopenic (P<0.0001). Sarcopenic index was related to six-minute walking speed (r=0.28, P<0.01). In conclusion, stroke survivors may be at an elevated risk for sarcopenia when considering age, gender, and race to non-stroke individuals which is related to functional mobility in this population.

2021 ◽  
Vol 37 (1) ◽  
Author(s):  
Akira Nemoto ◽  
Toru Goyagi

Abstract Background Sarcopenia promotes skeletal muscle atrophy and exhibits a high mortality rate. Its elucidation is of the highest clinical importance, but an animal experimental model remains controversial. In this study, we investigated a simple method for studying sarcopenia in rats. Results Muscle atrophy was investigated in 24-week-old, male, tail-suspended (TS), Sprague Dawley and spontaneously hypertensive rats (SHR). Age-matched SD rats were used as a control group. The skeletal muscle mass weight, muscle contraction, whole body tension (WBT), cross-sectional area (CSA), and Muscle RING finger-1 (MuRF-1) were assessed. Enzyme-linked immunosorbent assay was used to evaluate the MuRF-1 levels. Two muscles, the extensor digitorum longus and soleus muscles, were selected for representing fast and slow muscles, respectively. All data, except CSA, were analyzed by a one-way analysis of variance, whereas CSA was analyzed using the Kruskal-Wallis test. Muscle mass weight, muscle contraction, WBT, and CSA were significantly lower in the SHR (n = 7) and TS (n = 7) groups than in the control group, whereas MuRF-1 expression was dominant. Conclusions TS and SHR presented sarcopenic phenotypes in terms of muscle mass, muscle contraction and CSA. TS is a useful technique for providing muscle mass atrophy and weakness in an experimental model of sarcopenia in rats.


2017 ◽  
Vol 3 ◽  
pp. 233372141771363 ◽  
Author(s):  
Katja Stoever ◽  
Anke Heber ◽  
Sabine Eichberg ◽  
Klara Brixius

Objectives: The aim of this study was to determine the variables which show the highest association with muscle mass and to identify the most important predictors for muscle mass in elderly men with and without sarcopenia. Methods: A total of 71 men participated, aged ≥65 years. Sarcopenia was assessed using the definition of the European Working Group on Sarcopenia in Older People with determining skeletal muscle index (SMI), hand-grip strength (HGS), and Short Physical Performance Battery. In addition, maximum strength at upper and lower extremities and physical activity were measured. Results: Strong correlations existed between SMI and gait speed, HGS, maximum isometric strength at leg and chest press. Physical activity showed low correlations with muscle strength. Regression analysis revealed HGS and gait speed as key predictors for SMI. Discussion: The recommendation is measuring gait speed and HGS in clinical practice at first followed by measuring muscle mass for determining sarcopenia.


Author(s):  
Abeline Kapuczinski ◽  
Muhammad S. Soyfoo ◽  
Sandra De Breucker ◽  
Joëlle Margaux

AbstractFibromyalgia is a chronic disorder characterized by persistent widespread musculoskeletal pain. Patients with fibromyalgia have reduced physical activity and increased sedentary rate. The age-associated reduction of skeletal muscle mass and function is called sarcopenia. The European Working Group on Sarcopenia in Older People developed a practical clinical definition and consensus diagnostic criteria for sarcopenia. Loss of muscle function is common in fibromyalgia and in the elderly. The goal of this study is to determine whether the reduction of muscle function in fibromyalgia is related to sarcopenia according to the European Working Group on Sarcopenia in Older People criteria. Forty-five patients with fibromyalgia and thirty-nine healthy control female subjects were included. All the participants were assessed by Fibromyalgia Impact Questionnaire and SARC-F questionnaire. Muscle mass was evaluated by bioimpedance analysis, muscle strength by handgrip strength test and physical performance with the Short Physical Performance Battery. Fibromyalgia Impact Questionnaire and SARC-F scores were statistically significantly higher in the fibromyalgia group than in the control group, showing severe disease and a higher risk of sarcopenia in the fibromyalgia group (p < 0.001). Muscle strength and physical performance were statistically significantly lower in the group with fibromyalgia than in the control group (p < 0.001). There was no statistical difference between fibromyalgia and control groups regarding skeletal muscle mass (p = 0.263). Our study demonstrated a significant reduction in muscle function in fibromyalgia patients without any loss of muscle mass. Loss of muscle function without decrease in muscle mass is called dynapenia.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2259 ◽  
Author(s):  
Barbara Lattanzi ◽  
Michela Giusto ◽  
Carlina Albanese ◽  
Gianluca Mennini ◽  
Daria D’Ambrosio ◽  
...  

Sarcopenia is a frequent complication in liver transplant (LT) recipients. β-hydroxy-β-methyl-butyrate (HMB) has the potential to increase muscle-performance and tropism. Our study aims at evaluating the effect on muscle mass and functioning, and the safety of 12 weeks of HMB supplementation in patients after LT. This is a pilot, randomized study. Male patients undergoing LT were randomly assigned to the HMB or control group. A diet interview, anthropometry and body composition by dual energy X-ray absorptiometry (DEXA) were performed at enrollment (T0), after 12 weeks (T1) and after 12 months (T12). Twenty-two liver transplant male patients were enrolled in the study: 12 in the HMB group and 10 as the control group. At enrollment, demographic, clinical and nutritional data were similar. According to the appendicular skeletal muscle index, sarcopenia was present in 50% of patients. The appendix skeletal muscle mass index (ASMI) showed a significant increase at T1 and T12 in HMB patients, but not in controls. The mid-arm muscle-circumference and hand grip strength also increased at T1 and T12 versus T0 only in the HMB group. No side effects were reported in either group. The study showed a positive effect of HMB in the recovery of muscle mass and strength after LT. HMB supplement in patients after LT was safe and well tolerated.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2158
Author(s):  
Massimiliano Leigheb ◽  
Alessandro de Sire ◽  
Matteo Colangelo ◽  
Domenico Zagaria ◽  
Federico Alberto Grassi ◽  
...  

Sarcopenia is a skeletal muscle disorder characterized by reduced muscle mass, strength, and performance. Muscle ultrasound can be helpful in assessing muscle mass, quality, and architecture, and thus possibly useful for diagnosing or screening sarcopenia. The objective of this study was to evaluate the reliability of ultrasound assessment of tibialis anterior muscle in sarcopenia diagnosis. We included subjects undergoing total or partial hip replacement, comparing measures with a healthy control group. We measured the following parameters: tibialis anterior muscle thickness, echogenicity, architecture, stiffness, skeletal muscle index (SMI), hand grip strength, and sarcopenia related quality of life evaluated through the SarQoL questionnaire. We included 33 participants with a mean age of 54.97 ± 23.91 years. In the study group we found reduced tibialis anterior muscle thickness compared to the healthy control group (19.49 ± 4.92 vs. 28.94 ± 3.63 mm, p < 0.05) with significant correlation with SarQoL values (r = 0.80, p < 0.05), dynamometer hand strength (r = 0.72, p < 0.05) and SMI (r = 0.76, p < 0.05). Moreover, we found reduced stiffness (32.21 ± 12.31 vs. 27.07 ± 8.04 Kpa, p < 0.05). AUC measures of ROC curves were 0.89 predicting reduced muscle strength, and 0.97 predicting reduced SMI for tibialis anterior muscle thickness, while they were 0.73 and 0.85, respectively, for muscle stiffness. Our findings showed that ultrasound assessment of tibialis anterior muscle might be considered a reliable measurement tool to evaluate sarcopenia.


2017 ◽  
Vol 29 (9) ◽  
pp. 1644-1648 ◽  
Author(s):  
Akio Morimoto ◽  
Tadashi Suga ◽  
Nobuaki Tottori ◽  
Michio Wachi ◽  
Jun Misaki ◽  
...  

2003 ◽  
Vol 284 (1) ◽  
pp. E193-E205 ◽  
Author(s):  
G. van Hall ◽  
M. Jensen-Urstad ◽  
H. Rosdahl ◽  
H.-C. Holmberg ◽  
B. Saltin ◽  
...  

To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72–76% maximal O2 uptake. A high lactate appearance rate (Ra, 184 ± 17 μmol · kg−1 · min−1) but a low arterial lactate concentration (∼2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of ∼2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was ∼45% at rest and ∼95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate Ra during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.


2015 ◽  
Vol 308 (2) ◽  
pp. R105-R111 ◽  
Author(s):  
Wladimir M. Medeiros ◽  
Mari C. T. Fernandes ◽  
Diogo P. Azevedo ◽  
Flavia F. M. de Freitas ◽  
Beatriz C. Amorim ◽  
...  

Central cardiorespiratory and gas exchange limitations imposed by chronic obstructive pulmonary disease (COPD) impair ambulatory skeletal muscle oxygenation during whole body exercise. This investigation tested the hypothesis that peripheral factors per se contribute to impaired contracting lower limb muscle oxygenation in COPD patients. Submaximal neuromuscular electrical stimulation (NMES; 30, 40, and 50 mA at 50 Hz) of the quadriceps femoris was employed to evaluate contracting skeletal muscle oxygenation while minimizing the influence of COPD-related central cardiorespiratory constraints. Fractional O2 extraction was estimated by near-infrared spectroscopy (deoxyhemoglobin/myoglobin concentration; deoxy-[Hb/Mb]), and torque output was measured by isokinetic dynamometry in 15 nonhypoxemic patients with moderate-to-severe COPD (SpO2 = 94 ± 2%; FEV1 = 46.4 ± 10.1%; GOLD II and III) and in 10 age- and gender-matched sedentary controls. COPD patients had lower leg muscle mass than controls (LMM = 8.0 ± 0.7 kg vs. 8.9 ± 1.0 kg, respectively; P < 0.05) and produced relatively lower absolute and LMM-normalized torque across the range of NMES intensities ( P < 0.05 for all). Despite producing less torque, COPD patients had similar deoxy-[Hb/Mb] amplitudes at 30 and 40 mA ( P > 0.05 for both) and higher deoxy-[Hb/Mb] amplitude at 50 mA ( P < 0.05). Further analysis indicated that COPD patients required greater fractional O2 extraction to produce torque (i.e., ↑Δdeoxy-[Hb/Mb]/torque) relative to controls ( P < 0.05 for 40 and 50 mA) and as a function of NMES intensity ( P < 0.05 for all). The present data obtained during submaximal NMES of small muscle mass indicate that peripheral abnormalities contribute mechanistically to impaired contracting skeletal muscle oxygenation in nonhypoxemic, moderate-to-severe COPD patients.


2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 56-56
Author(s):  
Hiroaki Nozawa ◽  
Shigenobu Emoto ◽  
Koji Murono ◽  
Yasutaka Shuno ◽  
Soichiro Ishihara

56 Background: Systemic chemotherapy can cause loss of skeletal muscle mass in colorectal cancer (CRC) patients in the neoadjuvant and palliative settings. However, it is largely unknown how the body composition is changed by chemotherapy rendering unresectable CRC to resectable disease or how it affects the prognosis. This study aimed at elucidating the effects of systemic chemotherapy on skeletal muscles and survival in stage IV CRC patients who underwent conversion therapy. Methods: We reviewed 98 stage IV CRC patients who received systemic chemotherapy in our hospital. According to the treatment setting, patients were divided into the ‘Conversion’, ‘Neoadjuvant chemotherapy (NAC)’, and ‘Palliation’ groups. The cross-sectional area of skeletal muscles at the third lumbar level and changes in the skeletal muscle index (SMI), defined as the area divided by height squared, during chemotherapy were compared among patient groups. The effects of these parameters on prognosis were analyzed in the Conversion group. Results: The mean SMI increased by 8.0% during chemotherapy in the Conversion group (n = 38), whereas it decreased by 6.2% in the NAC group (n = 18) and 3.7% in the Palliation group (n = 42, p < 0.0001). Moreover, patients with increased SMI during chemotherapy had a better overall survival (OS) than those whose SMI decreased in the Conversion group (p = 0.021). The increase in SMI was an independent predictor of favorable OS on multivariate analysis (hazard ratio: 0.26). Conclusions: Stage IV CRC patients who underwent conversion to resection often had an increased SMI. As such an increase in SMI further conveys a survival benefit in conversion therapy, it may be important to make efforts to preserve muscle mass by meticulous approaches, such as nutritional support, muscle exercise programs, and pharmacological intervention even during chemotherapy in patients with metastatic CRC.


2021 ◽  
Vol 13 (1) ◽  
pp. 37-44
Author(s):  
ZBIGNIEW M. OSSOWSKI

Background: The loss of muscle function and reduced mobility levels are the main reasons for the limitations of independence and disability in older people. The main aim of this study was to determine the relationship between the skeletal muscle index and mobility in older women. Material and methods: ‪The study involved 166 older women. Skeletal muscle mass and other body components were determined by bioimpedance using an InBody 720 device. Functional mobility was evaluated with the timed up-and-go test. 30-second chair stand was also used to measure the level of functional strength in lower extremities. Results: ‪The skeletal muscle index was positively correlated with functional mobility (r=-0.22; p=0.00) and 30-second chair stand (r=-0.47; p=0.00). However, the strength of lower extremities was a significantly better parameter in predicting mobility in older women than the skeletal muscle index and skeletal muscle mass. Conclusions: The functional strength of lower extremity muscles and the skeletal muscle index can have a positive effect on functional mobility in older people. The results may be helpful in clinical practice when diagnosing mobility limitations and in the process of programming physical activity of older women aimed at the prevention of sarcopenia.


Sign in / Sign up

Export Citation Format

Share Document