Global Convergence of the (1 + 1) Evolution Strategy to a Critical Point

2020 ◽  
Vol 28 (1) ◽  
pp. 27-53 ◽  
Author(s):  
Tobias Glasmachers

We establish global convergence of the (1 + 1) evolution strategy, that is, convergence to a critical point independent of the initial state. More precisely, we show the existence of a critical limit point, using a suitable extension of the notion of a critical point to measurable functions. At its core, the analysis is based on a novel progress guarantee for elitist, rank-based evolutionary algorithms. By applying it to the (1 + 1) evolution strategy we are able to provide an accurate characterization of whether global convergence is guaranteed with full probability, or whether premature convergence is possible. We illustrate our results on a number of example applications ranging from smooth (non-convex) cases over different types of saddle points and ridge functions to discontinuous and extremely rugged problems.

Author(s):  
J.B. Posthill ◽  
R.P. Burns ◽  
R.A. Rudder ◽  
Y.H. Lee ◽  
R.J. Markunas ◽  
...  

Because of diamond’s wide band gap, high thermal conductivity, high breakdown voltage and high radiation resistance, there is a growing interest in developing diamond-based devices for several new and demanding electronic applications. In developing this technology, there are several new challenges to be overcome. Much of our effort has been directed at developing a diamond deposition process that will permit controlled, epitaxial growth. Also, because of cost and size considerations, it is mandatory that a non-native substrate be developed for heteroepitaxial nucleation and growth of diamond thin films. To this end, we are currently investigating the use of Ni single crystals on which different types of epitaxial metals are grown by molecular beam epitaxy (MBE) for lattice matching to diamond as well as surface chemistry modification. This contribution reports briefly on our microscopic observations that are integral to these endeavors.


2020 ◽  
Vol 70 (12) ◽  
pp. 4594-4600

The purpose of this study was to characterize some types of biomass wastes resulted from different activities such as: agriculture, forestry and food industry using thermogravimetric and ICP-MS analyses. Also, it was optimized an ICP-MS method for the determination of As, Cd and Pb from biomass ash samples. The ICP-MS analysis revealed that the highest concentration of metals (As, Cd, Pb) was recorded in the wood waste ash sample, also the thermogravimetric analysis indicated that the highest amount of ash was obtained for the same sample (26.82%). The biomass wastes mentioned in this study are alternative recyclable materials, reusable as pellets and briquettes. Keywords: ash, biomass, ICP-MS, minor elements, TG


2021 ◽  
Vol 92 (1) ◽  
Author(s):  
Bruna B. Przybulinski ◽  
Rodrigo G. Garcia ◽  
Maria Fernanda de C. Burbarelli ◽  
Claudia M. Komiyama ◽  
Deivid Kelly Barbosa ◽  
...  
Keyword(s):  

Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 437-446 ◽  
Author(s):  
Lisa Girard ◽  
Michael Freeling

Abstract Insertions of Mutator transposons into maize genes can generate suppressible alleles. Mu suppression is when, in the absence of Mu activity, the phenotype of a mutant allele reverts to that of its progenitor. Here we present the characterization of five dominant Mu-suppressible alleles of the knox (knotted1-like homeobox) genes liguleless3 and rough sheath1, which exhibit neomorphic phenotypes in the leaves. RNA blot analysis suggests that Mu suppression affects only the neomorphic aspect of the allele, not the wild-type aspect. Additionally, Mu suppression appears to be exerting its effects at the level of transcription or transcript accumulation. We show that truncated transcripts are produced by three alleles, implying a mechanism for Mu suppression of 5′ untranslated region insertion alleles distinct from that which has been described previously. Additionally, it is found that Mu suppression can be caused by at least three different types of Mutator elements. Evidence presented here suggests that whether an allele is suppressible or not may depend upon the site of insertion. We cite previous work on the knox gene kn1, and discuss our results in the context of interactions between Mu-encoded products and the inherently negative regulation of neomorphic liguleless3 and rough sheath1 transcription.


2021 ◽  
Author(s):  
Zenita Adhireksan ◽  
Deepti Sharma ◽  
Phoi Leng Lee ◽  
Qiuye Bao ◽  
Sivaraman Padavattan ◽  
...  

Abstract Structural characterization of chromatin is challenging due to conformational and compositional heterogeneity in vivo and dynamic properties that limit achievable resolution in vitro. Although the maximum resolution for solving structures of large macromolecular assemblies by electron microscopy has recently undergone profound increases, X-ray crystallographic approaches may still offer advantages for certain systems. One such system is compact chromatin, wherein the crystalline state recapitulates the crowded molecular environment within the nucleus. Here we show that nucleosomal constructs with cohesive-ended DNA can be designed that assemble into different types of circular configurations or continuous fibers extending throughout crystals. We demonstrate the utility of the method for characterizing nucleosome compaction and linker histone binding at near-atomic resolution but also advance its application for tackling further problems in chromatin structural biology and for generating novel types of DNA nanostructures. We provide a library of cohesive-ended DNA fragment expression constructs and a strategy for engineering DNA-based nanomaterials with a seemingly vast potential variety of architectures and histone chemistries.


2021 ◽  
Author(s):  
Yurong Wang ◽  
Fanshu Xiang ◽  
Zhendong Zhang ◽  
Qiangchuan Hou ◽  
Zhuang Guo

Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 721 ◽  
Author(s):  
Jorge A. Ramírez-Gómez ◽  
Javier Illescas ◽  
María del Carmen Díaz-Nava ◽  
Claudia Muro-Urista ◽  
Sonia Martínez-Gallegos ◽  
...  

Atrazine (ATZ) is an herbicide which is applied to the soil, and its mechanism of action involves the inhibition of photosynthesis. One of its main functions is to control the appearance of weeds in crops, primarily in corn, sorghum, sugar cane, and wheat; however, it is very toxic for numerous species, including humans. Therefore, this work deals with the adsorption of ATZ from aqueous solutions using nanocomposite materials, synthesized with two different types of organo-modified clays. Those were obtained by the free radical polymerization of 4-vinylpyridine (4VP) and acrylamide (AAm) in different stoichiometric ratios, using tetrabutylphosphonium persulfate (TBPPS) as a radical initiator and N,N′-methylenebisacrylamide (BIS) as cross-linking agent. The structural, morphological, and textural characteristics of clays, copolymers, and nanocomposites were determined through different analytical and instrumental techniques, i.e., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption kinetics experiments of ATZ were determined with the modified and synthesized materials, and the effect of the ratio between 4VP and AAm moieties on the removal capacities of the obtained nanocomposites was evaluated. Finally, from these sets of experiments, it was demonstrated that the synthesized nanocomposites with higher molar fractions of 4VP obtained the highest removal percentages of ATZ.


2021 ◽  
Author(s):  
Lei Jin ◽  
Nerea Bilbao ◽  
Yang Lv ◽  
Xiao-Ye Wang ◽  
Soltani Paniz ◽  
...  

Graphene nanoribbons (GNRs), quasi-one-dimensional strips of graphene, exhibit a nonzero bandgap due to quantum confinement and edge effects. In the past decade, different types of GNRs with atomically precise structures...


Radiocarbon ◽  
2019 ◽  
Vol 61 (6) ◽  
pp. 1973-1981
Author(s):  
C Telloli ◽  
A Rizzo ◽  
C Canducci ◽  
P Bartolomei

ABSTRACTThe ENEA Radiocarbon Laboratory (Bologna, Italy) has been operating since 1985; it is the oldest among such laboratories operating in Italy and has been active for about 30 years in the field of dating of different types of samples with the radiocarbon (14C) liquid scintillation method. This study shows the detailed procedure for radiocarbon analysis on bioplastic materials by means of the synthesis of benzene, which includes CO2 production and purification, synthesis of acetylene, and synthesis and collection of benzene. The changes made to the original design of the synthesis procedures and the operational parameters adopted to optimize the combustion of the plastic materials are described. The measurement of 14C activity was performed using the liquid scintillation counting technique by a QuantulusTM 1220 low-background counter. The δ13C content was compared with the percentage of 14C concentration for the characterization of the bio content in plastic used in the food packaging.


2012 ◽  
Vol 102 (4) ◽  
pp. 1446-1476 ◽  
Author(s):  
Daron Acemoglu ◽  
Georgy Egorov ◽  
Konstantin Sonin

In dynamic collective decision making, current decisions determine the future distribution of political power and influence future decisions. We develop a general framework to study this class of problems. Under acyclicity, we characterize dynamically stable states as functions of the initial state and obtain two general insights. First, a social arrangement is made stable by the instability of alternative arrangements that are preferred by sufficiently powerful groups. Second, efficiency-enhancing changes may be resisted because of further changes they will engender. We use this framework to analyze dynamics of political rights in a society with different types of extremist views. (JEL D71, D72, K10)


Sign in / Sign up

Export Citation Format

Share Document