Affective and Executive Network Processing Associated with Persuasive Antidrug Messages

2013 ◽  
Vol 25 (7) ◽  
pp. 1136-1147 ◽  
Author(s):  
Ian S. Ramsay ◽  
Marco C. Yzer ◽  
Monica Luciana ◽  
Kathleen D. Vohs ◽  
Angus W. MacDonald

Previous research has highlighted brain regions associated with socioemotional processes in persuasive message encoding, whereas cognitive models of persuasion suggest that executive brain areas may also be important. The current study aimed to identify lateral prefrontal brain areas associated with persuasive message viewing and understand how activity in these executive regions might interact with activity in the amygdala and medial pFC. Seventy adolescents were scanned using fMRI while they watched 10 strongly convincing antidrug public service announcements (PSAs), 10 weakly convincing antidrug PSAs, and 10 advertisements (ads) unrelated to drugs. Antidrug PSAs compared with nondrug ads more strongly elicited arousal-related activity in the amygdala and medial pFC. Within antidrug PSAs, those that were prerated as strongly persuasive versus weakly persuasive showed significant differences in arousal-related activity in executive processing areas of the lateral pFC. In support of the notion that persuasiveness involves both affective and executive processes, functional connectivity analyses showed greater coactivation between the lateral pFC and amygdala during PSAs known to be strongly (vs. weakly) convincing. These findings demonstrate that persuasive messages elicit activation in brain regions responsible for both emotional arousal and executive control and represent a crucial step toward a better understanding of the neural processes responsible for persuasion and subsequent behavior change.

2018 ◽  
Author(s):  
Jay Joseph Van Bavel

We review literature from several fields to describe common experimental tasks used to measure human cooperation as well as the theoretical models that have been used to characterize cooperative decision-making, as well as brain regions implicated in cooperation. Building on work in neuroeconomics, we suggest a value-based account may provide the most powerful understanding the psychology and neuroscience of group cooperation. We also review the role of individual differences and social context in shaping the mental processes that underlie cooperation and consider gaps in the literature and potential directions for future research on the social neuroscience of cooperation. We suggest that this multi-level approach provides a more comprehensive understanding of the mental and neural processes that underlie the decision to cooperate with others.


2017 ◽  
Author(s):  
Roel M. Willems ◽  
Franziska Hartung

Behavioral evidence suggests that engaging with fiction is positively correlated with social abilities. The rationale behind this link is that engaging with fictional narratives offers a ‘training modus’ for mentalizing and empathizing. We investigated the influence of the amount of reading that participants report doing in their daily lives, on connections between brain areas while they listened to literary narratives. Participants (N=57) listened to two literary narratives while brain activation was measured with fMRI. We computed time-course correlations between brain regions, and compared the correlation values from listening to narratives to listening to reversed speech. The between-region correlations were then related to the amount of fiction that participants read in their daily lives. Our results show that amount of fiction reading is related to functional connectivity in areas known to be involved in language and mentalizing. This suggests that reading fiction influences social cognition as well as language skills.


2020 ◽  
Vol 21 (12) ◽  
pp. 4503
Author(s):  
Sabah Nisar ◽  
Ajaz A. Bhat ◽  
Sheema Hashem ◽  
Najeeb Syed ◽  
Santosh K. Yadav ◽  
...  

Post-traumatic stress disorder (PTSD) is a highly disabling condition, increasingly recognized as both a disorder of mental health and social burden, but also as an anxiety disorder characterized by fear, stress, and negative alterations in mood. PTSD is associated with structural, metabolic, and molecular changes in several brain regions and the neural circuitry. Brain areas implicated in the traumatic stress response include the amygdala, hippocampus, and prefrontal cortex, which play an essential role in memory function. Abnormalities in these brain areas are hypothesized to underlie symptoms of PTSD and other stress-related psychiatric disorders. Conventional methods of studying PTSD have proven to be insufficient for diagnosis, measurement of treatment efficacy, and monitoring disease progression, and currently, there is no diagnostic biomarker available for PTSD. A deep understanding of cutting-edge neuroimaging genetic approaches is necessary for the development of novel therapeutics and biomarkers to better diagnose and treat the disorder. A current goal is to understand the gene pathways that are associated with PTSD, and how those genes act on the fear/stress circuitry to mediate risk vs. resilience for PTSD. This review article explains the rationale and practical utility of neuroimaging genetics in PTSD and how the resulting information can aid the diagnosis and clinical management of patients with PTSD.


Author(s):  
Judy A. Prasad ◽  
Aishwarya H. Balwani ◽  
Erik C. Johnson ◽  
Joseph D. Miano ◽  
Vandana Sampathkumar ◽  
...  

AbstractNeural cytoarchitecture is heterogeneous, varying both across and within brain regions. The consistent identification of regions of interest is one of the most critical aspects in examining neurocircuitry, as these structures serve as the vital landmarks with which to map brain pathways. Access to continuous, three-dimensional volumes that span multiple brain areas not only provides richer context for identifying such landmarks, but also enables a deeper probing of the microstructures within. Here, we describe a three-dimensional X-ray microtomography imaging dataset of a well-known and validated thalamocortical sample, encompassing a range of cortical and subcortical structures. In doing so, we provide the field with access to a micron-scale anatomical imaging dataset ideal for studying heterogeneity of neural structure.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ling-min Jin ◽  
Cai-juan Qin ◽  
Lei Lan ◽  
Jin-bo Sun ◽  
Fang Zeng ◽  
...  

Background.Development of non-deqicontrol is still a challenge. This study aims to set up a potential approach to non-deqicontrol by using lidocaine anesthesia at ST36.Methods.Forty healthy volunteers were recruited and they received two fMRI scans. One was accompanied with manual acupuncture at ST36 (DQ group), and another was associated with both local anesthesia and manual acupuncture at the same acupoint (LA group).Results.Comparing to DQ group, more than 90 percentdeqisensations were reduced by local anesthesia in LA group. The mainly activated regions in DQ group were bilateral IFG, S1, primary motor cortex, IPL, thalamus, insula, claustrum, cingulate gyrus, putamen, superior temporal gyrus, and cerebellum. Surprisingly only cerebellum showed significant activation in LA group. Compared to the two groups, bilateral S1, insula, ipsilateral IFG, IPL, claustrum, and contralateral ACC were remarkably activated.Conclusions.Local anesthesia at ST36 is able to block most of thedeqifeelings and inhibit brain responses todeqi, which would be developed into a potential approach for non-deqicontrol. Bilateral S1, insula, ipsilateral IFG, IPL, claustrum, and contralateral ACC might be the key brain regions responding todeqi.


2012 ◽  
Vol 24 (8) ◽  
pp. 1742-1752 ◽  
Author(s):  
Bryan T. Denny ◽  
Hedy Kober ◽  
Tor D. Wager ◽  
Kevin N. Ochsner

The distinction between processes used to perceive and understand the self and others has received considerable attention in psychology and neuroscience. Brain findings highlight a role for various regions, in particular the medial PFC (mPFC), in supporting judgments about both the self and others. We performed a meta-analysis of 107 neuroimaging studies of self- and other-related judgments using multilevel kernel density analysis [Kober, H., & Wager, T. D. Meta-analyses of neuroimaging data. Wiley Interdisciplinary Reviews, 1, 293–300, 2010]. We sought to determine what brain regions are reliably involved in each judgment type and, in particular, what the spatial and functional organization of mPFC is with respect to them. Relative to nonmentalizing judgments, both self- and other judgments were associated with activity in mPFC, ranging from ventral to dorsal extents, as well as common activation of the left TPJ and posterior cingulate. A direct comparison between self- and other judgments revealed that ventral mPFC as well as left ventrolateral PFC and left insula were more frequently activated by self-related judgments, whereas dorsal mPFC, in addition to bilateral TPJ and cuneus, was more frequently activated by other-related judgments. Logistic regression analyses revealed that ventral and dorsal mPFC lay at opposite ends of a functional gradient: The z coordinates reported in individual studies predicted whether the study involved self- or other-related judgments, which were associated with increasingly ventral or dorsal portions of mPFC, respectively. These results argue for a distributed rather than localizationist account of mPFC organization and support an emerging view on the functional heterogeneity of mPFC.


2021 ◽  
Author(s):  
Daphne Chylinski ◽  
Maxime Van Egroo ◽  
Justinas Narbutas ◽  
Ekaterina Koshmanova ◽  
Christian Berthomier ◽  
...  

Abstract Recent literature is pointing towards a tight relationship between sleep quality and amyloid-beta (Aβ) accumulation, a hallmark of Alzheimer’s disease (AD). Sleep arousals are considered to induce sleep disruption, and though their heterogeneity has been suggested, their correlates remain to be established. We classified arousals in sleep of 100 healthy older individuals according to their association with muscular tone increase (E+/E-) and sleep stage transition (T+/T-), and show differences in EEG oscillatory compositions across arousal types. We found that T + E- arousals, which interrupt sleep stability, were positively correlated with Aβ burden in brain regions earliest affected by AD neuropathology. By contrast, more prevalent T-E + arousals, upholding sleep continuity, were associated with lower cortical Aβ burden, and better cognition. We provide empirical evidence that spontaneous arousals are diverse and differently associated with brain integrity and cognition. Sleep arousals may offer opportunities to transiently synchronise distant brain areas, akin to sleep spindles.


2019 ◽  
pp. 423-472
Author(s):  
Georg F. Striedter ◽  
R. Glenn Northcutt

After summarizing the earlier chapters, which focused on the evolution of specific lineages, this chapter examines general patterns in the evolution of vertebrate nervous systems. Most conspicuous is that relative brain size and complexity increased independently in many lineages. The proportional size of individual brain regions tends to change predictably with absolute brain size (and neurogenesis timing), but the scaling rules vary across lineages. Attempts to link variation in the size of individual brain areas (or entire brains) to behavior are complicated in part because the connections, internal organization, and functions of individual brain regions also vary across phylogeny. In addition, major changes in the functional organization of vertebrate brains were caused by the emergence of novel brain regions (e.g., neocortex in mammals and area dorsalis centralis in teleosts) and novel circuits. These innovations significantly modified the “vertebrate brain Bauplan,” but their mechanistic origins and implications require further investigation.


1998 ◽  
Vol 17 (3) ◽  
pp. 157-162 ◽  
Author(s):  
Maxine C Lintern ◽  
Janet R Wetherell ◽  
Margaret E Smith

1 In brain areas of untreated guinea-pigs the highest activity of acetylcholinesterase was seen in the striatum and cerebellum, followed by the midbrain, medulla-pons and cortex, and the lowest in the hippocampus. The activity in diaphragm was sevenfold lower than in the hippocampus. 2 At 1 h after soman (27 mg/kg) administration the activity of the enzyme was dramatically reduced in all tissues studied. In muscle the three major molecular forms (A12, G4 and G1) showed a similar degree of inhibition and a similar rate of recovery and the activity had returned to normal by 7 days. 3 In the brain soman inhibited the G4 form more than the G1 form. The hippocampus, cortex and midbrain showed the greatest reductions in enzyme activity. At 7 days the activity in the cortex, medulla pons and striatum had recovered but in the hippocampus, midbrain and cerebellum it was still inhibited. 4 Thus the effects of soman administration varied in severity and time course in the different tissues studied. However the enzyme activity was still reduced in all tissues at 24 h when the overt signs of poisoning had disappeared.


Author(s):  
L. Shen ◽  
J. Dillard

The theory of psychological reactance (Brehm, 1966; Brehm & Brehm, 1981; Wicklund, 1974) has often been called upon to explain the failure of persuasive attempts, and/or the “boomerang effect” in persuasion (Buller, Borland, & Burgoon, 1998; Burgoon, Alvaro, Grandpre, & Voulodakis, 2002; Grandpre, Alvaro, Burgoon, Miller, & Hall, 2003; Ringold, 2002). The theory contends that any persuasive message may arouse a motivation to reject the advocacy. That motivation is called reactance. Reactance may be considered to be an aversive motivational state that functions to reinstate an individual’s perceptions of autonomy. Although initially investigated as a state phenomenon, it has become evident that individuals are likely to vary in their trait propensity to experience reactance. Individual differences in reactance proneness offer a useful means of segmenting target audiences, especially in the context of health communication, because individuals most at risk for various health threats are also the individuals most likely to experience reactance when exposed to persuasive messages about that health risk (e.g., Bensley & Wu, 1991).


Sign in / Sign up

Export Citation Format

Share Document