scholarly journals Sensitivity analysis of human brain structural network construction

2017 ◽  
Vol 1 (4) ◽  
pp. 446-467 ◽  
Author(s):  
Kuang Wei ◽  
Matthew Cieslak ◽  
Clint Greene ◽  
Scott T. Grafton ◽  
Jean M. Carlson

Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP), we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes.

2021 ◽  
Vol 15 ◽  
Author(s):  
Sahin Hanalioglu ◽  
Siyar Bahadir ◽  
Ilkay Isikay ◽  
Pinar Celtikci ◽  
Emrah Celtikci ◽  
...  

Objective: Graph theory applications are commonly used in connectomics research to better understand connectivity architecture and characterize its role in cognition, behavior and disease conditions. One of the numerous open questions in the field is how to represent inter-individual differences with graph theoretical methods to make inferences for the population. Here, we proposed and tested a simple intuitive method that is based on finding the correlation between the rank-ordering of nodes within each connectome with respect to a given metric to quantify the differences/similarities between different connectomes.Methods: We used the diffusion imaging data of the entire HCP-1065 dataset of the Human Connectome Project (HCP) (n = 1,065 subjects). A customized cortical subparcellation of HCP-MMP atlas (360 parcels) (yielding a total of 1,598 ROIs) was used to generate connectivity matrices. Six graph measures including degree, strength, coreness, betweenness, closeness, and an overall “hubness” measure combining all five were studied. Group-level ranking-based aggregation method (“measure-then-aggregate”) was used to investigate network properties on population level.Results: Measure-then-aggregate technique was shown to represent population better than commonly used aggregate-then-measure technique (overall rs: 0.7 vs 0.5). Hubness measure was shown to highly correlate with all five graph measures (rs: 0.88–0.99). Minimum sample size required for optimal representation of population was found to be 50 to 100 subjects. Network analysis revealed a widely distributed set of cortical hubs on both hemispheres. Although highly-connected hub clusters had similar distribution between two hemispheres, average ranking values of homologous parcels of two hemispheres were significantly different in 71% of all cortical parcels on group-level.Conclusion: In this study, we provided experimental evidence for the robustness, limits and applicability of a novel group-level ranking-based hubness analysis technique. Graph-based analysis of large HCP dataset using this new technique revealed striking hemispheric asymmetry and intraparcel heterogeneities in the structural connectivity of the human brain.


Author(s):  
Jeffrey T. Duda ◽  
Philip A. Cook ◽  
James C. Gee

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 970
Author(s):  
Maedeh Khalilian ◽  
Kamran Kazemi ◽  
Mahshid Fouladivanda ◽  
Malek Makki ◽  
Mohammad Sadegh Helfroush ◽  
...  

The majority of network studies of human brain structural connectivity are based on single-shell diffusion-weighted imaging (DWI) data. Recent advances in imaging hardware and software capabilities have made it possible to acquire multishell (b-values) high-quality data required for better characterization of white-matter crossing-fiber microstructures. The purpose of this study was to investigate the extent to which brain structural organization and network topology are affected by the choice of diffusion magnetic resonance imaging (MRI) acquisition strategy and parcellation scale. We performed graph-theoretical network analysis using DWI data from 35 Human Connectome Project subjects. Our study compared four single-shell (b = 1000, 3000, 5000, 10,000 s/mm2) and multishell sampling schemes and six parcellation scales (68, 200, 400, 600, 800, 1000 nodes) using five graph metrics, including small-worldness, clustering coefficient, characteristic path length, modularity and global efficiency. Rich-club analysis was also performed to explore the rich-club organization of brain structural networks. Our results showed that the parcellation scale and imaging protocol have significant effects on the network attributes, with the parcellation scale having a substantially larger effect. Regardless of the parcellation scale, the brain structural networks exhibited a rich-club organization with similar cortical distributions across the parcellation scales involving at least 400 nodes. Compared to single b-value diffusion acquisitions, the deterministic tractography using multishell diffusion imaging data consisting of shells with b-values higher than 5000 s/mm2 resulted in significantly improved fiber-tracking results at the locations where fiber bundles cross each other. Brain structural networks constructed using the multishell acquisition scheme including high b-values also exhibited significantly shorter characteristic path lengths, higher global efficiency and lower modularity. Our results showed that both parcellation scale and sampling protocol can significantly impact the rich-club organization of brain structural networks. Therefore, caution should be taken concerning the reproducibility of connectivity results with regard to the parcellation scale and sampling scheme.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giuseppe Giacopelli ◽  
Domenico Tegolo ◽  
Emiliano Spera ◽  
Michele Migliore

AbstractThe brain’s structural connectivity plays a fundamental role in determining how neuron networks generate, process, and transfer information within and between brain regions. The underlying mechanisms are extremely difficult to study experimentally and, in many cases, large-scale model networks are of great help. However, the implementation of these models relies on experimental findings that are often sparse and limited. Their predicting power ultimately depends on how closely a model’s connectivity represents the real system. Here we argue that the data-driven probabilistic rules, widely used to build neuronal network models, may not be appropriate to represent the dynamics of the corresponding biological system. To solve this problem, we propose to use a new mathematical framework able to use sparse and limited experimental data to quantitatively reproduce the structural connectivity of biological brain networks at cellular level.


2012 ◽  
Vol 1 (1) ◽  
pp. 78-91 ◽  
Author(s):  
S Kollias

Diffusion tensor imaging (DTI) is a neuroimaging MR technique, which allows in vivo and non-destructive visualization of myeloarchitectonics in the neural tissue and provides quantitative estimates of WM integrity by measuring molecular diffusion. It is based on the phenomenon of diffusion anisotropy in the nerve tissue, in that water molecules diffuse faster along the neural fibre direction and slower in the fibre-transverse direction. On the basis of their topographic location, trajectory, and areas that interconnect the various fibre systems of the mammalian brain are divided into commissural, projectional and association fibre systems. DTI has opened an entirely new window on the white matter anatomy with both clinical and scientific applications. Its utility is found in both the localization and the quantitative assessment of specific neuronal pathways. The potential of this technique to address connectivity in the human brain is not without a few methodological limitations. A wide spectrum of diffusion imaging paradigms and computational tractography algorithms has been explored in recent years, which established DTI as promising new avenue, for the non-invasive in vivo mapping of structural connectivity at the macroscale level. Further improvements in the spatial resolution of DTI may allow this technique to be applied in the near future for mapping connectivity also at the mesoscale level. DOI: http://dx.doi.org/10.3126/njr.v1i1.6330 Nepalese Journal of Radiology Vol.1(1): 78-91


2015 ◽  
Vol 27 (8) ◽  
pp. 1471-1491 ◽  
Author(s):  
John D. Medaglia ◽  
Mary-Ellen Lynall ◽  
Danielle S. Bassett

Network science provides theoretical, computational, and empirical tools that can be used to understand the structure and function of the human brain in novel ways using simple concepts and mathematical representations. Network neuroscience is a rapidly growing field that is providing considerable insight into human structural connectivity, functional connectivity while at rest, changes in functional networks over time (dynamics), and how these properties differ in clinical populations. In addition, a number of studies have begun to quantify network characteristics in a variety of cognitive processes and provide a context for understanding cognition from a network perspective. In this review, we outline the contributions of network science to cognitive neuroscience. We describe the methodology of network science as applied to the particular case of neuroimaging data and review its uses in investigating a range of cognitive functions including sensory processing, language, emotion, attention, cognitive control, learning, and memory. In conclusion, we discuss current frontiers and the specific challenges that must be overcome to integrate these complementary disciplines of network science and cognitive neuroscience. Increased communication between cognitive neuroscientists and network scientists could lead to significant discoveries under an emerging scientific intersection known as cognitive network neuroscience.


2021 ◽  
Author(s):  
Yusi Chen ◽  
Qasim Bukhari ◽  
Tiger Wutu Lin ◽  
Terrence J Sejnowski

Recordings from resting state functional magnetic resonance imaging (rs-fMRI) reflect the influence of pathways between brain areas. A wide range of methods have been proposed to measure this functional connectivity (FC), but the lack of ''ground truth'' has made it difficult to systematically validate them. Most measures of FC produce connectivity estimates that are symmetrical between brain areas. Differential covariance (dCov) is an algorithm for analyzing FC with directed graph edges. Applied to synthetic datasets, dCov-FC was more effective than covariance and partial correlation in reducing false positive connections and more accurately matching the underlying structural connectivity. When we applied dCov-FC to resting state fMRI recordings from the human connectome project (HCP) and anesthetized mice, dCov-FC accurately identified strong cortical connections from diffusion Magnetic Resonance Imaging (dMRI) in individual humans and viral tract tracing in mice. In addition, those HCP subjects whose rs-fMRI were more integrated, as assessed by a graph-theoretic measure, tended to have shorter reaction times in several behavioral tests. Thus, dCov-FC was able to identify anatomically verified connectivity that yielded measures of brain integration causally related to behavior.


2018 ◽  
Author(s):  
Amrit Kashyap ◽  
Shella Keilholz

AbstractBrain Network Models have become a promising theoretical framework in simulating signals that are representative of whole brain activity such as resting state fMRI. However, it has been difficult to compare the complex brain activity between simulated and empirical data. Previous studies have used simple metrics that surmise coordination between regions such as functional connectivity, and we extend on this by using various different dynamical analysis tools that are currently used to understand resting state fMRI. We show that certain properties correspond to the structural connectivity input that is shared between the models, and certain dynamic properties relate more to the mathematical description of the Brain Network Model. We conclude that the dynamic properties that gauge more temporal structure rather than spatial coordination in the rs-fMRI signal seem to provide the largest contrasts between different BNMs and the unknown empirical dynamical system. Our results will be useful in constraining and developing more realistic simulations of whole brain activity.


2017 ◽  
Author(s):  
Moo K. Chung ◽  
Jamie L. Hanson ◽  
Nagesh Adluru ◽  
Andrew L. Alexander ◽  
Richard J. Davidson ◽  
...  

AbstractIn diffusion tensor imaging, structural connectivity between brain regions is often measured by the number of white matter fiber tracts connecting them. Other features such as the length of tracts or fractional anisotropy (FA) are also used in measuring the strength of connectivity. In this study, we investigated the effects of incorporating the number of tracts, the tract length and FA-values into the connectivity model. Using various node-degree based graph theory features, the three connectivity models are compared. The methods are applied in characterizing structural networks between normal controls and maltreated children, who experienced maltreatment while living in post-institutional settings before being adopted by families in the US.


2021 ◽  
Author(s):  
Yusi Chen ◽  
Burke Q Rosen ◽  
Terrence J Sejnowski

Investigating causal neural interactions are essential to understanding sub- sequent behaviors. Many statistical methods have been used for analyzing neural activity, but efficiently and correctly estimating the direction of net- work interactions remains difficult. Here, we derive dynamical differential covariance (DDC), a new method based on dynamical network models that detects directional interactions with low bias and high noise tolerance with- out the stationary assumption. The method is first validated on networks with false positive motifs and multiscale neural simulations where the ground truth connectivity is known. Then, applying DDC to recordings of resting-state functional magnetic resonance imaging (rs-fMRI) from over 1,000 individual subjects, DDC consistently detected regional interactions with strong structural connectivity. DDC can be generalized to a wide range of dynamical models and recording techniques.


Sign in / Sign up

Export Citation Format

Share Document