scholarly journals Data-driven, PCFG-based and Pseudo-PCFG-based Models for Chinese Dependency Parsing

2013 ◽  
Vol 1 ◽  
pp. 301-314 ◽  
Author(s):  
Weiwei Sun ◽  
Xiaojun Wan

We present a comparative study of transition-, graph- and PCFG-based models aimed at illuminating more precisely the likely contribution of CFGs in improving Chinese dependency parsing accuracy, especially by combining heterogeneous models. Inspired by the impact of a constituency grammar on dependency parsing, we propose several strategies to acquire pseudo CFGs only from dependency annotations. Compared to linguistic grammars learned from rich phrase-structure treebanks, well designed pseudo grammars achieve similar parsing accuracy and have equivalent contributions to parser ensemble. Moreover, pseudo grammars increase the diversity of base models; therefore, together with all other models, further improve system combination. Based on automatic POS tagging, our final model achieves a UAS of 87.23%, resulting in a significant improvement of the state of the art.

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2228
Author(s):  
Mostafa Farrokhabadi

This paper presents findings on mitigating the negative impact of renewable energy resources variability on the energy scheduling problem, in particular for island grids and microgrids. The methods and findings presented in this paper are twofold. First, data obtained from the City of Summerside in the province of Prince Edward Island, Canada, is leveraged to demonstrate the effectiveness of state-of-the-art time series predictors in mitigating energy scheduling inaccuracy. Second, the outcome of the time series prediction analysis is used to propose a novel data-driven battery energy storage system (BESS) sizing study for energy scheduling purposes. The proposed probabilistic method accounts for intra-interval variations of generation and demand, thus mitigating the trade-off between time resolution of the problem formulation and the solution accuracy. In addition, as part of the sizing study, a BESS management strategy is proposed to minimize energy scheduling inaccuracies, and is then used to obtain the optimal BESS size. Finally, the paper presents quantitative analyses of the impact of both the energy predictors and the BESS on the supplied energy cost using the actual data of the Summerside Electric grid. The paper reveals the significant potential for reducing energy cost in renewable-penetrated grids and microgrids through state-of-the-art predictors combined with applications of properly-sized energy storage systems.


2008 ◽  
Vol 34 (3) ◽  
pp. 357-389 ◽  
Author(s):  
Gülşen Eryiğit ◽  
Joakim Nivre ◽  
Kemal Oflazer

The suitability of different parsing methods for different languages is an important topic in syntactic parsing. Especially lesser-studied languages, typologically different from the languages for which methods have originally been developed, pose interesting challenges in this respect. This article presents an investigation of data-driven dependency parsing of Turkish, an agglutinative, free constituent order language that can be seen as the representative of a wider class of languages of similar type. Our investigations show that morphological structure plays an essential role in finding syntactic relations in such a language. In particular, we show that employing sublexical units called inflectional groups, rather than word forms, as the basic parsing units improves parsing accuracy. We test our claim on two different parsing methods, one based on a probabilistic model with beam search and the other based on discriminative classifiers and a deterministic parsing strategy, and show that the usefulness of sublexical units holds regardless of the parsing method. We examine the impact of morphological and lexical information in detail and show that, properly used, this kind of information can improve parsing accuracy substantially. Applying the techniques presented in this article, we achieve the highest reported accuracy for parsing the Turkish Treebank.


2003 ◽  
Vol 18 (4) ◽  
pp. 388-394 ◽  
Author(s):  
Stefan Antonsson ◽  
Mikael E. Lindstrom ◽  
Martin Ragnar

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 250
Author(s):  
Jiří Hájek ◽  
Zaneta Dlouha ◽  
Vojtěch Průcha

This article is a response to the state of the art in monitoring the cooling capacity of quenching oils in industrial practice. Very often, a hardening shop requires a report with data on the cooling process for a particular quenching oil. However, the interpretation of the data can be rather difficult. The main goal of our work was to compare various criteria used for evaluating quenching oils. Those of which prove essential for operation in tempering plants would then be introduced into practice. Furthermore, the article describes monitoring the changes in the properties of a quenching oil used in a hardening shop, the effects of quenching oil temperature on its cooling capacity and the impact of the water content on certain cooling parameters of selected oils. Cooling curves were measured (including cooling rates and the time to reach relevant temperatures) according to ISO 9950. The hardening power of the oil and the area below the cooling rate curve as a function of temperature (amount of heat removed in the nose region of the Continuous cooling transformation - CCT curve) were calculated. V-values based on the work of Tamura, reflecting the steel type and its CCT curve, were calculated as well. All the data were compared against the hardness and microstructure on a section through a cylinder made of EN C35 steel cooled in the particular oil. Based on the results, criteria are recommended for assessing the suitability of a quenching oil for a specific steel grade and product size. The quenching oils used in the experiment were Houghto Quench C120, Paramo TK 22, Paramo TK 46, CS Noro MO 46 and Durixol W72.


Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


Sign in / Sign up

Export Citation Format

Share Document