scholarly journals Growth and Physiological Responses of Four Plant Species to Different Sources of Particulate Matter

2021 ◽  
Vol 24 (5) ◽  
pp. 461-468
Author(s):  
Kei-Jung Kwon ◽  
Uuriintuya Odsuren ◽  
Huong-Thi Bui ◽  
Sang-Yong Kim ◽  
Bong-Ju Park

Background and objective: Particulate matter (PM) has a serious impact on health. Recently, studies are conducted to reduce PM in an environmentally friendly way using plants. This study investigated the physiological responses of plants and their ability to remove PM by continuously spraying different PM sources (loam, fly ash, carbon black) to four native plant species, such as Iris sanguinea, Pteris multifida, Vitis coignetiae, and Viburnum odoratissimum var. awabuki. Methods: The four plant species were randomly placed in four chambers, and 0.1 g of different PM was injected into each chamber twice a week. We measured chlorophyll, carotenoid, chlorophyll fluorescence (Fv/Fm), total leaf area, amount of leaf wax, PM10 (sPM10) and PM2.5 (sPM2.5) on the leaf surface, and PM10 (wPM10) and PM2.5 (wPM2.5) on the wax layer. Results: For I. sanguinea and V. coignetiae, the sources of PM did not affect the growth response. P. multifida showed high chlorophyll a, b, total chlorophyll, and carotenoid content in carbon black as well as high Fv/Fm and total leaf area, thereby proving that carbon black helped plant growth. By PM sources, sPM10 showed a significant difference in three plant species, sPM2.5 in two plant species, and wPM10 in one plant species, indicating that sPM10 was most affected by PM sources. Conclusion: Carbon black increased the leaf area by affecting the growth of P. multifida. This plant can be effectively used for PM reduction by increasing the adsorption area. I. sanguinea and V. coignetiae can be used as economical landscaping plants since they can grow regardless of PM sources.

2021 ◽  
Author(s):  
Azrina Karima ◽  
Carlos Ocampo ◽  
Louise Barton ◽  
Carolyn Oldham

<p>Rapid urbanisation, climate change and scarcity of freshwater leads to conservative water consumption practices, including wastewater recycling for non-potable ‘low exposure risk’ end-use, such as sub-surface landscape and selective garden irrigation. Small-scale decentralised and cost-effective water treatment technologies like green walls require low energy, and are ideal for implementation in both residential and commercial areas. Green walls have been shown to attenuate nutrients, with the treatment efficiency mostly dependent on soil characteristics and plant types. While green wall systems have long been used for thermal comfort under temperate climates, there has been less research on its optimised performance under Mediterranean climates, where long, dry periods in summer and sometimes water-logged conditions in winter, create challenges for both plant and soil health. Our pilot-scale research project used planters (2.5 m x 0.7 m x 0.75 m) to establish detached green façades irrigated by greywater, and to test the impact on façade viability and treatment performance of planter orientation, plant species,  deciduous and non-deciduous plants and the projected total leaf area. Influent and effluent volumes from the planters were carefully monitored, and water balances were established for the planters. The water requirements of green walls in east, west and north facing orientations, and using different plant species, were quantified under different seasons. We determined that annual water requirements for the deciduous plants were almost half that of the non-deciduous plants; as expected the leaves appeared on deciduous plants as air temperatures increased and then both type of plants showed similar water requirements. The evapotranspiration as estimated by the water balances, was validated by quantifying the plant water loss (transpiration) using a portable photosynthetic unit (LI-6400XT, Licor Inc., Lincoln, NE, USA). The transpiration measured on a single leaf (in triplicate) was scaled up to the projected total leaf area of the façade, to estimate the total transpiration from the planter. The influents and effluents were also monitored for water quality, to determine how their treatment performance changed with vegetation maturity and season. The green walls showed up to 90% total nitrogen and 80% total phosphorus removal efficiencies throughout the two years study period. However, the pathogen count was greatly impacted by the irrigation water temperature and the effluents had higher pathogen counts than the influents, irrespective of facade orientation or plant species. The results of the leaf area analysis and water balance measurements, as well as their effect on water quality, will be presented to identify suitable orientation and plant species for improving the urban micro-climate that could thrive under greywater irrigation, and in particular under Mediterranean climates.</p>


2009 ◽  
Vol 23 (1) ◽  
pp. 130-135 ◽  
Author(s):  
André Mantovani ◽  
Ricardo Rios Iglesias

The amount of resources invested in reproduction is closely correlated to plant size. However, the increase in reproductive investment is not always proportional to the increase in vegetative growth, as the proportion of plant resources allocated to reproduction can increase, decrease or be maintained along different plant sizes. Although comprising thousand of species, epiphytes are poorly studied in relation to reproductive allocation (RA). We describe the variation in the RA of the epiphytic bromeliad Tillandsia stricta Soland with increasing plant sizes. Our goal is not only to evaluate the RA of the whole inflorescence but also quantify the contribution of ancillary structures in the final RA of this plant species. With increasing sizes of T. stricta the reproductive allocation of biomass to the whole inflorescence decreased significantly along plant sizes from 37% to 12%. Reproductive allocation to ancillary and to flowers decreased respectively from 30% to 9% and 10% to 3%. As leaves are the main source of water and nutrients absorption in atmospheric Tillandsia, the total leaf area and area per leaf were used as indicators of foraging capacity, that also increased with plant size. We discuss these results with respect to the capacity of T. stricta to reproduce in the heterogeneous environment of the canopies.


Plants ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 93 ◽  
Author(s):  
Most Naznin ◽  
Mark Lefsrud ◽  
Valerie Gravel ◽  
Md Azad

The aim of this study was to investigate the different combinations of red (R) and blue (B) light emitting diode (LEDs’) lighting effects on growth, pigment content, and antioxidant capacity in lettuce, spinach, kale, basil, and pepper in a growth chamber. The growth chamber was equipped with R and B light percentages based on total light intensity: 83% R + 17% B; 91% R + 9% B; 95% R + 5% B; and control was 100% R. The photosynthetic photon flux density (PPFD), photoperiod, temperature, and relative humidity of the growth chamber were maintained at 200 ± 5 μmol m−2 s−1, 16 h, 25/21 ± 2.5 °C, and 65 ± 5%, respectively. It is observed that the plant height of lettuce, kale, and pepper was significantly increased under 100% R light, whereas the plant height of spinach and basil did not show any significant difference. The total leaf number of basil and pepper was significantly increased under the treatment of 95% R + 5% B light, while no significant difference was observed for other plant species in the same treatment. Overall, the fresh and dry mass of the studied plants was increased under 91% R + 9% B and 95% R + 5% B light treatment. The significantly higher flower and fruit numbers of pepper were observed under the 95% R + 5% B treatment. The chlorophyll a, chlorophyll b, and total chlorophyll content of lettuce, spinach, basil, and pepper was significantly increased under the 91% R + 9% B treatment while the chlorophyll content of kale was increased under the 95% R + 5% B light treatment. The total carotenoid content of lettuce and spinach was higher in the 91% R + 9% B treatment whereas the carotenoid content of kale, basil, and pepper was increased under the 83% R + 17% B treatment. The antioxidant capacity of the lettuce, spinach, and kale was increased under the 83% R + 17% B treatment while basil and pepper were increased under the 91% R + 9% B treatment. This result indicates that the addition of B light is essential with R light to enhance growth, pigment content, and antioxidant capacity of the vegetable plant in a controlled environment. Moreover, the percentage of B with R light is plant species dependent.


2021 ◽  
Vol 22 (10) ◽  
Author(s):  
Benyamin Lakitan ◽  
Kartika Kartika ◽  
Laily Ilman Widuri ◽  
Erna Siaga ◽  
Lya Nailatul Fadilah

Abstract. Lakitan B, Kartika K, Widuri LI, Siaga E, Fadilah LN. 2021. Lesser-known ethnic leafy vegetables Talinum paniculatum grown at tropical ecosystem: Morphological traits and non-destructive estimation of total leaf area per branch. Biodiversitas 22: 4487-4495. Talinum paniculatum known as Java ginseng is an ethnic vegetable in Indonesia that has also been utilized as a medical plant. Young leaves are the primary economic part of T. paniculatum, which can be eaten fresh or cooked. This study was focused on characterizing morphological traits of T. panicultaum and developing a non-destructive yet accurate and reliable model for predicting total area per leaf cluster on each elongated branch per flush growth cycle. The non-destructive approach allows frequent and timely measurements. In addition, the developed model can be used as guidance for deciding the time to harvest for optimum yield. Results indicated that T. paniculatum flourished rapidly under wet tropical conditions, especially if they were propagated using stem cuttings. The plants produced more than 50 branches and more than 800 leaves, or on average produced more than 15 leaves per branch at the age of nine weeks after planting (WAP). The zero-intercept linear model using a combination of two traits of length x width (LW) as a predictor was accurate and reliable for predicting a single leaf area (R2 = 0.997). Meanwhile, the estimation of total area per leaf cluster was more accurate if three traits, i.e., number of leaves, the longest leaf, and the widest leaf in each cluster were used as predictors with the zero-intercept linear regression model (R2 = 0.984). However, the use of a single trait of length (L) and width (W) of the largest leaf within each cluster as a predictor in the power regression model exhibited moderately accurate prediction at the R2 = 0.883 and 0.724, respectively.


Genetika ◽  
2003 ◽  
Vol 35 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Nada Hladni ◽  
Dragan Skoric ◽  
Marija Kraljevic-Balalic

The main goals of sunflower breeding in Yugoslavia and abroad are increased seed yield and oil content per unit area and increased resistance to diseases, insects and stress conditions via an optimization of plant architecture. In order to determine the mode of inheritance, gene effects and correlations of total leaf number per plant, total leaf area and plant height, six genetically divergent inbred lines of sunflower were subjected to half diallel crosses. Significant differences in mean values of all the traits were found in the F1 and F2 generations. Additive gene effects were more important in the inheritance of total leaf number per plant and plant height, while in the case of total leaf area per plant the nonadditive ones were more important looking at all the combinations in the F1 and F2 generations. The average degree of dominance (Hi/D)1/2 was lower than one for total leaf number per plant and plant height, so the mode of inheritance was partial dominance, while with total leaf area the value was higher than one, indicating super dominance as the mode of inheritance. Significant positive correlation was found: between total leaf area per plant and total leaf number per plant (0.285*) and plant height (0.278*). The results of the study are of importance for further sunflower breeding work.


2018 ◽  
Vol 39 (5) ◽  
pp. 1937 ◽  
Author(s):  
Caroline Farias Barreto ◽  
Leticia Vanni Ferreira ◽  
Savana Irribarem Costa ◽  
Andressa Vighi Schiavon ◽  
Tais Barbosa Becker ◽  
...  

For strawberry cultivation in Brazil, producers are dependent on imported seedlings. An alternative strategy to reduce this dependence is the use of seedlings obtained from nursery plants grown in a protected environment. However, as these seedlings are produced in the summer and planted at the end of this season or the spring of the following year, it is necessary to control growth to reduce the energy costs of the plants. The objective of this study was to evaluate the effect of different concentrations and periods of application of proexadione calcium (ProCa) on growth control of strawberry seedlings. The experiment was carried out in a greenhouse with seedlings of the cultivars ‘Aromas’ and ‘Camarosa’, produced by rooting stolons and kept in polystyrene trays of 72 cells in a substrate of carbonized rice husk. The experimental design was completely randomized, with a 4 × 2 factorial scheme (4 concentrations of ProCa: 0, 100, 200, and 400 mg L-1 × 2 periods of application: at 20 and 30 days after the planting period of rooting stolon). Plant survival, crown diameter, petiole length, total leaf area, specific leaf area, chlorophyll concentration, and dry mass of the crown and shoot were evaluated. The application of ProCa at 20 days after the planting period of the rooting stolon at the concentrations of 200 and 400 mg L-1 favored the reduction of petiole length in plants of ‘Aromas’ strawberry and total leaf aerial in ‘Camarosa’ strawberry. The application of ProCa from the concentration of 100 mg L-1 reduced the vegetative growth of ‘Aromas’ and ‘Camarosa’ strawberry seedlings cultivated in substrate.


2020 ◽  
Vol 12 (2) ◽  
pp. 269 ◽  
Author(s):  
Shunfu Xiao ◽  
Honghong Chai ◽  
Ke Shao ◽  
Mengyuan Shen ◽  
Qing Wang ◽  
...  

Sugar beet is one of the main crops for sugar production in the world. With the increasing demand for sugar, more desirable sugar beet genotypes need to be cultivated through plant breeding programs. Precise plant phenotyping in the field still remains challenge. In this study, structure from motion (SFM) approach was used to reconstruct a three-dimensional (3D) model for sugar beets from 20 genotypes at three growth stages in the field. An automatic data processing pipeline was developed to process point clouds of sugar beet including preprocessing, coordinates correction, filtering and segmentation of point cloud of individual plant. Phenotypic traits were also automatically extracted regarding plant height, maximum canopy area, convex hull volume, total leaf area and individual leaf length. Total leaf area and convex hull volume were adopted to explore the relationship with biomass. The results showed that high correlations between measured and estimated values with R2 > 0.8. Statistical analyses between biomass and extracted traits proved that both convex hull volume and total leaf area can predict biomass well. The proposed pipeline can estimate sugar beet traits precisely in the field and provide a basis for sugar beet breeding.


2003 ◽  
Vol 54 (4) ◽  
pp. 371 ◽  
Author(s):  
T. S. Pritsa ◽  
D. G. Voyiatzis ◽  
C. J. Voyiatzi ◽  
M. S. Sotiriou

The aim of this work was to assess growth traits during the initial developmental stages of olive seedlings, which could be correlated to time to first flowering, facilitating fast selection in olive breeding programs. The experimental material consisted of 232 olive seedlings derived from controlled crosses of 'Kalamon' with self (KA × KA), with 'Amphissis' (KA × AM), and with 'Koroneiki' (KA × KO) and from open pollination of 'Kalamon', 'Amphissis', 'Koroneiki', 'Chalkidikis', and 'Manzanillo'. Vegetative traits of the seedlings, including canopy height and diameter, length of lateral vegetation, number of leaves, mean and total leaf area per plant, leaf shape characteristics, and specific leaf area (SLA), were recorded until 15 months after sowing. The first seedlings to initiate flowers, 4 years after sowing, were also recorded. The existence of correlations between the above growth traits and time to first flowering was investigated. In single-branched seedlings 6 months after sowing, height measured at this stage was significantly correlated with the mean and total leaf area per plant, specific leaf area, and other vegetative traits measured 15 months after sowing. Seedlings with high values of these parameters were the first to initiate flowers 33 months later. Our results indicated that pre-selection of olive seedlings for earliness of first flowering is possible, based on vegetative characteristics assessed very early in their development.


2018 ◽  
Vol 40 (6) ◽  
Author(s):  
Marlúcia Pereira dos Santos ◽  
Victor Martins Maia ◽  
Fernanda Soares Oliveira ◽  
Rodinei Facco Pegoraro ◽  
Silvânio Rodrigues dos Santos ◽  
...  

Abstract The estimation of pineapple total leaf area by simple, fast and non-destructive methods allow inferences related to carbon fixation estimative, biotic and abiotic damages and correlating positively with yield. The objective was to estimate D leaf area and total leaf area and of ‘Pérola’ pineapple plants from biometric measurements. For this purpose, 125 slips were selected and standardized by weight for planting in pots. Nine months after planting in a greenhouse, the plants were harvested to evaluate the total leaf area of the plant, D leaf area and D leaf length and width using a portable leaf area meter. Pearson correlation analysis was made and it was observed significative positive and strong correlation among the studied variables. Then, regression models were adjusted. It was observed that the D leaf area of ‘Pérola’ pineapple can be estimated from the length and width of this same leaf and the total leaf area can be estimated from the D leaf area.


Sign in / Sign up

Export Citation Format

Share Document