Morphological and phylogenetical analyses of pathogenic Hypomyces perniciosus isolates from Agaricus bisporus causing wet bubble disease in China

Phytotaxa ◽  
2021 ◽  
Vol 491 (2) ◽  
pp. 115-130
Author(s):  
CHUN-LAN ZHANG ◽  
ZHENG-WEN JIN ◽  
CAN SUN ◽  
ODESHNEE MOODLEY ◽  
JI-ZE XU ◽  
...  

Hypomyces perniciosus is a destructive pathogen of Agaricus bisporus. The disease has been known to occur wherever A. bisporus is cultivated. Morphological characteristics have shown differences between reported isolates of H. perniciosus. However, clarification is needed to determine whether those isolates are the same species and an investigation of the phylogenetic relationships among them is warranted. Here, taxonomic and phylogenetic studies were carried out on 29 wet bubble disease pathogen isolates from China. Our analyses of the morphological characteristics and phylogenetic results support that they are the same H. perniciosus. Moreover, they are separated into two groups, groups ⅰ and groups ii. Pathogenicity test results inferred that group ii had weaker pathogenicity than group ⅰ. Consequently, we can deduce that wet bubble disease is still caused by H. perniciosus and isolates from two distinct groups.

2013 ◽  
Vol 423-426 ◽  
pp. 353-357
Author(s):  
Juan Sun ◽  
Shun Sheng Chen ◽  
Cui Yu ◽  
Cui Yun Yang

The isolate MP-63280 was isolated from imported soybean in Shanghai port by traditional PDA method. The isolate grew fast, produced typical black microsclerotia. Universal primers and special primers were used to amplify and sequence from MP-63280. Compared with the identity of rDNA sequence of Macrophomina phaseolina from NCBI GenBank databases by blast method, the result showed that its homology was up to 99%. Pathogenicity tests showed that soybean, cotton and sweet potato were infected by MP-63280. Based on morphological characteristics, molecular and pathogenicity test results, the isolate was identified as Macrophomina phaseolina (Tassi) goid. The effective methods to prevent the fungi from spread and transimission are to strengthen inspection and quarantine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Wang ◽  
Bo Wang ◽  
Xiaofang Sun ◽  
Xiaobo Qi ◽  
Conghao Zhao ◽  
...  

AbstractTo elucidate the symptoms and pathogens diversity of corn Fusarium sheath rot (CFSR), diseased samples were collected from 21 county-level regions in 12 prefecture-level districts of Sichuan Province from 2015 to 2018 in the present study. In the field, two symptom types appeared including small black spots with a linear distribution and wet blotches with a tawny or brown color. One hundred thirty-seven Fusarium isolates were identified based on morphological characteristics and phylogenetic analysis (EF1-α), and Koch’s postulates were also assessed. The results identified the isolates as 8 species in the Fusarium genus, including F. verticillioides, F. proliferatum, F. fujikuroi, F. asiaticum, F. equiseti, F. meridionale, F. graminearum and F. oxysporum, with isolation frequencies of 30.00, 22.67, 15.33, 7.33, 6.00, 5.33, 3.33 and 1.33%, respectively. Fusariumverticillioides and F. proliferatum were the dominant and subdominant species, respectively. Two or more Fusarium species such as F. verticillioides and F. proliferatum were simultaneously identified at a mixed infection rate of 14.67% in the present study. The pathogenicity test results showed that F. proliferatum and F. fujikuroi exhibited the highest virulence, with average disease indices of 30.28 ± 2.87 and 28.06 ± 1.96, followed by F. equiseti and F. verticillioides, with disease indices of 21.48 ± 2.14 and 16.21 ± 1.84, respectively. Fusarium asiaticum, F. graminearum and F. meridonale showed lower virulence, with disease indices of 13.80 ± 2.07, 11.57 ± 2.40 and 13.89 ± 2.49, respectively. Finally, F. orysporum presented the lowest virulence in CFSR, with a disease index of 10.14 ± 1.20. To the best of our knowledge, this is the first report of F. fujikuroi, F. meridionale and F. asiaticum as CFSR pathogens in China.


Zootaxa ◽  
2018 ◽  
Vol 4379 (4) ◽  
pp. 484 ◽  
Author(s):  
WEICAI CHEN ◽  
XIAOWEN LIAO ◽  
SHICHU ZHOU ◽  
YUNMING MO ◽  
YONG HUANG

Rhacophorus yaoshanensis Liu & Hu, 1962 and Theloderma kwangsiensis Liu & Hu, 1962 were described by Liu & Hu (1962) based on two specimens and one specimen, respectively, from the Dayaoshan Ranges, Guangxi, China. Since these two species were described, no additional specimens have been collected from their type localities, presenting an issue for phylogenetic studies of the genera. Five decades later, we have rediscovered R. yaoshanensis and T. kwangsiensis from their type localities. In this paper, we re-describe the two species and conduct a preliminary assessment of their phylogenetic relationships using two mitochondrial DNA genes (12S and 16S rRNA). The results indicate with high support that R. yaoshanensis is closely related to Rhacophorus pinglongensis. Theloderma kwangsiensis is nested within Theloderma corticale, with only 0.0–0.6% pairwise divergence, a level typical of intraspecific variation. Based on both molecular and morphological analyses, we further confirm that T. kwangsiensis is a synonym of T. corticale. Shiwandashan National Nature Reserve, Guangxi Province, China, is a new record for T. corticale. 


Plant Disease ◽  
2021 ◽  
Author(s):  
Charles Krasnow ◽  
Nancy Rechcigl ◽  
Jennifer Olson ◽  
Linus Schmitz ◽  
Steven N. Jeffers

Chrysanthemum (Chrysanthemum × morifolium) plants exhibiting stem and foliage blight were observed in a commercial nursery in eastern Oklahoma in June 2019. Disease symptoms were observed on ~10% of plants during a period of frequent rain and high temperatures (26-36°C). Dark brown lesions girdled the stems of symptomatic plants and leaves were wilted and necrotic. The crown and roots were asymptomatic and not discolored. A species of Phytophthora was consistently isolated from the stems of diseased plants on selective V8 agar (Lamour and Hausbeck 2000). The Phytophthora sp. produced ellipsoid to obpyriform sporangia that were non-papillate and persistent on V8 agar plugs submerged in distilled water for 8 h. Sporangia formed on long sporangiophores and measured 50.5 (45-60) × 29.8 (25-35) µm. Oospores and chlamydospores were not formed by individual isolates. Mycelium growth was present at 35°C. Isolates were tentatively identified as P. drechsleri using morphological characteristics and growth at 35°C (Erwin and Ribeiro 1996). DNA was extracted from mycelium of four isolates, and the internal transcribed spacer (ITS) region was amplified using universal primers ITS 4 and ITS 6. The PCR product was sequenced and a BLASTn search showed 100% sequence similarity to P. drechsleri (GenBank Accession Nos. KJ755118 and GU111625), a common species of Phytophthora that has been observed on ornamental and vegetable crops in the U.S. (Erwin and Ribeiro 1996). The gene sequences for each isolate were deposited in GenBank (accession Nos. MW315961, MW315962, MW315963, and MW315964). These four isolates were paired with known A1 and A2 isolates on super clarified V8 agar (Jeffers 2015), and all four were mating type A1. They also were sensitive to the fungicide mefenoxam at 100 ppm (Olson et al. 2013). To confirm pathogenicity, 4-week-old ‘Brandi Burgundy’ chrysanthemum plants were grown in 10-cm pots containing a peat potting medium. Plants (n = 7) were atomized with 1 ml of zoospore suspension containing 5 × 103 zoospores of each isolate. Control plants received sterile water. Plants were maintained at 100% RH for 24 h and then placed in a protected shade-structure where temperatures ranged from 19-32°C. All plants displayed symptoms of stem and foliage blight in 2-3 days. Symptoms that developed on infected plants were similar to those observed in the nursery. Several inoculated plants died, but stem blight, dieback, and foliar wilt were primarily observed. Disease severity averaged 50-60% on inoculated plants 15 days after inoculation. Control plants did not develop symptoms. The pathogen was consistently isolated from stems of symptomatic plants and verified as P. drechsleri based on morphology. The pathogenicity test was repeated with similar results. P. drechsleri has a broad host range (Erwin and Ribeiro 1996; Farr et al. 2021), including green beans (Phaseolus vulgaris), which are susceptible to seedling blight and pod rot in eastern Oklahoma. Previously, P. drechsleri has been reported on chrysanthemums in Argentina (Frezzi 1950), Pennsylvania (Molnar et al. 2020), and South Carolina (Camacho 2009). Chrysanthemums are widely grown in nurseries in the Midwest and other regions of the USA for local and national markets. This is the first report of P. drechsleri causing stem and foliage blight on chrysanthemum species in the United States. Identifying sources of primary inoculum may be necessary to limit economic loss from P. drechsleri.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1109-1109 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Lamb's lettuce or corn salad (Valerianella olitoria) is increasingly grown in Italy and used primarily in the preparation of mixed processed salad. In the fall of 2005, plants of lamb's lettuce, cv Trophy, exhibiting a basal rot were observed in some commercial greenhouses near Bergamo in northern Italy. The crown of diseased plants showed extensive necrosis, progressing to the basal leaves, with plants eventually dying. The first symptoms, consisting of water-soaked zonate lesions on basal leaves, were observed on 30-day-old plants during the month of October when temperatures ranged between 15 and 22°C. Disease was uniformly distributed in the greenhouses, progressed rapidly in circles, and 50% of the plants were affected. Diseased tissue was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with 100 μg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently and readily isolated and maintained in pure culture after single-hyphal tipping (3). The five isolates of R. solani, obtained from affected plants successfully anastomosed with tester isolate AG 4, no. RT 31, received from R. Nicoletti of the Istituto Sperimentale per il Tabacco, Scafati, Italy (2). The hyphal diameter at the point of anastomosis was reduced, and cell death of adjacent cells occurred (1). Pairings were also made with AG 1, 2, 3, 5, 7, and 11 with no anastomoses observed between the five isolates and testers. For pathogenicity tests, the inoculum of R. solani (no. Rh. Vale 1) was grown on autoclaved wheat kernels at 25°C for 10 days. Plants of cv. Trophy were grown in 10-liter containers (20 × 50 cm, 15 plants per container) on a steam disinfested substrate (equal volume of peat and sand). Inoculations were made on 20-day-old plants by placing 2 g of infected wheat kernels at each corner of the container with 3 cm as the distance to the nearest plant. Plants inoculated with clean wheat kernels served as controls. Three replicates (containers) were used. Plants were maintained at 25°C in a growth chamber programmed for 12 h of irradiation at a relative humidity of 80%. The first symptoms, consisting of water-soaked lesions on the basal leaves, developed 5 days after inoculation with crown rot and plant kill in 2 weeks. Control plants remained healthy. R. solani was consistently reisolated from infected plants. The pathogenicity test was carried out twice with similar results. This is, to our knowledge, the first report of R. solani on lamb's lettuce in Italy as well as worldwide. The isolates were deposited at the AGROINNOVA fungal collection. The disease continues to spread in other greenhouses in northern Italy. References: (1) D. Carling. Rhizoctonia Species: Pages 37–47 in: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, the Netherlands, 1996. (2) J. Parmeter et al. Phytopathology, 59:1270, 1969. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN, 1996.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2982 ◽  
Author(s):  
Mun Hua Tan ◽  
Han Ming Gan ◽  
Yin Peng Lee ◽  
Gary C.B. Poore ◽  
Christopher M. Austin

BackgroundWhole mitochondrial DNA is being increasingly utilized for comparative genomic and phylogenetic studies at deep and shallow evolutionary levels for a range of taxonomic groups. Although mitogenome sequences are deposited at an increasing rate into public databases, their taxonomic representation is unequal across major taxonomic groups. In the case of decapod crustaceans, several infraorders, including Axiidea (ghost shrimps, sponge shrimps, and mud lobsters) and Caridea (true shrimps) are still under-represented, limiting comprehensive phylogenetic studies that utilize mitogenomic information.MethodsSequence reads from partial genome scans were generated using the Illumina MiSeq platform and mitogenome sequences were assembled from these low coverage reads. In addition to examining phylogenetic relationships within the three infraorders, Axiidea, Gebiidea, and Caridea, we also investigated the diversity and frequency of codon usage bias and mitogenome gene order rearrangements.ResultsWe present new mitogenome sequences for five shrimp species from Australia that includes two ghost shrimps,Callianassa ceramicaandTrypaea australiensis, along with three caridean shrimps,Macrobrachium bullatum,Alpheus lobidens, andCaridinacf.nilotica. Strong differences in codon usage were discovered among the three infraorders and significant gene order rearrangements were observed. While the gene order rearrangements are congruent with the inferred phylogenetic relationships and consistent with taxonomic classification, they are unevenly distributed within and among the three infraorders.DiscussionOur findings suggest potential for mitogenome rearrangements to be useful phylogenetic markers for decapod crustaceans and at the same time raise important questions concerning the drivers of mitogenome evolution in different decapod crustacean lineages.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 429-429
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

Lupinus polyphyllus (Leguminosae), Washington lupine, is a perennial herbaceous plant. In March 2008, in a campus greenhouse at the University of Torino, Grugliasco (northern Italy), a leaf blight was observed on 20% of potted 30-day-old plants. Semicircular, water-soaked lesions developed on leaves just above the soil line at the leaf-petiole junction and later along the leaf margins. Lesions expanded for several days along the midvein until the entire leaf was destroyed. Blighted leaves turned brown, withered, clung to the shoots, and matted on the surrounding foliage. Severely infected plants died. Plants were grown in a sphagnum peat/perlite/clay (70:20:10) substrate at temperatures between 18 and 25°C and relative humidity of 60 to 80%. Diseased tissue was disinfested for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA) amended with 25 mg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani (4) was consistently and readily recovered, then transferred and maintained in pure culture. Ten-day-old mycelium grown on PDA at 20 ± 1°C appeared light brown, rather compact, and exhibited radial growth. The isolates of R. solani successfully anastomosed with tester isolate AG 4 (AG 4 RT 31, obtained from tobacco plants). The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and cell death of adjacent cells was observed. Results were consistent with other reports on anastomosis reactions (3). Pairings were also made with tester isolates AG 1, 2.1, 2.2, 3, 6, 7, 11, and BI with no anastomoses observed between the recovered and tester isolates. The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 660-bp fragment showed 100% homology with the sequence of R. solani. The nucleotide sequence has been assigned GenBank Accession No. FJ486272. For pathogenicity tests, the inoculum of R. solani was prepared by growing the pathogen on PDA for 10 days. Plants of 30-day-old L. polyphyllus were grown in 10-liter containers (10 plants per container) on a steam disinfested sphagnum peat/perlite/clay (70:20:10) medium. Inoculum, consisting of an aqueous suspension of mycelium disks prepared from PDA cultures (5 g of mycelium per plant), was placed at the collar of plants. Plants inoculated with water and PDA fragments alone served as control treatments. Three replicates were used. Plants were maintained in a greenhouse at temperatures between 18 and 23°C. First symptoms, similar to those observed in the nursery, developed 10 days after the artificial inoculation. R. solani was consistently reisolated from infected leaves and stems. Control plants remained healthy. The pathogenicity test was repeated twice. The susceptibility of L. polyphyllus to R. solani was reported in Poland (2). This is, to our knowledge, the first report of leaf blight of L. polyphyllus caused by R. solani in Italy. The importance of the disease is at the moment limited. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) W. Blaszczak. Rocz. Nauk. Roln. Ser A 85:705, 1962. (3) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. Kluwer Academic Publishers, The Netherlands, 1996. (4) B. Sneh et al. Identification of Rhizoctonia species. The American Phytopathological Society, St Paul, MN, 1991.


2020 ◽  
Vol 21 (3) ◽  
Author(s):  
I Gede Swibawa I Gede ◽  
YUYUN FITRIANA ◽  
SOLIKHIN ◽  
RADIX SUHARJO ◽  
F.X. SUSILO ◽  
...  

Abstract. Swibawa IG, Fitriana Y, Solikhin, Suharjo R, Susilo FX, Rani E, Haryani MS, Wardana RA. 2020. Morpho-molecular identification and pathogenicity test on fungal parasites of guava root-knot nematode eggs in Lampung, Indonesia. Biodiversitas 21: 1108-1115. This study aimed to obtain and discover the identity of the species of fungal egg parasites of root-knot nematodes (RKN), which have a high pathogenic ability causing major losses in vegetable crops. The exploration of the fungi was carried out in 2016 and 2018 from Crystal guava plantations in East Lampung, Central Lampung, Tanggamus, and NirAma, a commercial product that has been used for controlling Meloidogyne sp. in Indonesia. Identification was carried out based on morphological characteristics and molecular-based gene sequential analysis of Intergenic Transcribed Spacer (ITS) 1 and ITS 4. A pathogenicity test was carried out in vitro and in a greenhouse using tomato plants as indicator plants. In the in vitro test, observations were made on the percentage of infected RKN eggs. The observations in the greenhouse test were carried out on RKN populations in the soil and roots of tomato plants, root damage (root knots), and damage intensity due to RKN infection. The exploration resulted in five isolates of fungal egg parasites of RKN from the guava plantations in East Lampung (2), Central Lampung (1), Tanggamus (1), and from the isolation results of commercial products (1). The isolates were given codes as B4120X (PT GGP PG1), B3010 (PT GGP PG4), B412G (PT GGP PG 4), B01TG (Tanggamus), and BioP (Commercial products). Based on their morphological characteristics, the isolates were classified into the genus of Paecilomyces. The results of molecular identification showed that the discovered fungi were Purpureocillium lilacinum (Thom.) Luangsa Ard. (Syn. Paecilomyces lilacinus (Thom.) Samson.). Based on the in vitro tests, the five fungal isolates were able to parasitize RKN eggs at 86.4-100%. In the greenhouse test, all isolates significantly suppressed nematode populations in the soil and tomato roots, inhibited the formation of root knots, and produced lower damage intensity compared to controls. Among all the isolates tested, B01TG had the best ability to infect nematode eggs (99.5%), suppressing the formation of root knots, nematode population in the soil and the roots of tomato plants, and the damage intensity compared to other isolates.


Plant Disease ◽  
2007 ◽  
Vol 91 (11) ◽  
pp. 1515-1515 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
D. Bertetti ◽  
M. L. Gullino

In the winter of 2007 in Piedmont (northern Italy), symptoms of a previously unknown disease were observed on beet (Beta vulgaris L. subsp. vulgaris) (garden beet group) grown under a tunnel on several commercial farms near Cuneo. First symptoms appeared on 1-month-old plants, occurring as brown, round-to-oval spots as much as 2 cm in diameter with dark concentric rings near the perimeter. Small, dark pycnidia were present throughout the spots in concentric rings. Generally, older, lower leaves were affected more than the younger ones. Ten to fifteen percent of the plants were affected. Symptoms on the roots began near the crown as small, dark, sunken spots that became soft and water soaked. Eventually, spots on the roots turned dark brown to black and black lines separated diseased and healthy tissues. Older infected tissues were black, dry, shrunken, and spongy. Pycnidia were not observed on affected roots. From infected leaves and roots, a fungus was consistently isolated on potato dextrose agar (PDA) amended with 25 mg/l of streptomycin. The fungus was grown on PDA and maintained at 22°C (12 h of light, 12 h of dark). After 10 days, black pycnidia (130 to 328 [204] μm in diameter) developed, releasing abundant hyaline, elliptical, nonseptate conidia measuring 3.9 to 6.7 (5.1) × 2.4 to 5.9 (3.6) μm. On the basis of its morphological characteristics, the fungus was identified as a Phoma sp. (1). The internal transcribed spacer (ITS) region was amplified using primers ITS4/ITS6 (2) and sequenced. BLASTn analysis of the 557 bp obtained showed an E-value of 0.0 with Phoma betae. The nucleotide sequence has been assigned GenBank Accession No. EU003450. Pathogenicity tests were performed by spraying leaves of healthy 20-day-old potted B. vulgaris plants with a spore and mycelial suspension (1 × 106 spores or mycelial fragments per ml). Noninoculated plants sprayed only with water served as controls. Fifteen plants (three per pot) were used for each treatment. Plants were covered with plastic bags for 5 days after inoculation and kept in a growth chamber at 20°C. Symptoms previously described developed on leaves of all inoculated plants 5 days after inoculation, while control plants remained healthy. Later, pycnidia and conidia, with the same dimensions and characteristics previously described, were observed on the infected leaves. The fungus was consistently reisolated from the lesions of the inoculated plants. The pathogenicity test was carried out twice. P. betae on B. vulgaris var. cycla has been reported in Canada (3) as well as in other countries. The same pathogen was reported in Italy on sugar beet (2). References: (1) G. H. Boerema and G. J. Bollen. Persoonia 8:111, 1975. (2) A. Canova. Inf. Fitopatol. 16:207, 1966. (3) D. E L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (4) J. R. Howard et al. Diseases of Vegetable Crops in Canada. Canadian Phytopathological Society, 1994.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1955
Author(s):  
Anysia Hedy Ujat ◽  
Ganesan Vadamalai ◽  
Yukako Hattori ◽  
Chiharu Nakashima ◽  
Clement Kiing Fook Wong ◽  
...  

The re-emergence of the Fusarium wilt caused by Fusarium odoratissimum (F. odoratissimum) causes global banana production loss. Thirty-eight isolates of Fusarium species (Fusarium spp.) were examined for morphological characteristics on different media, showing the typical Fusarium spp. The phylogenetic trees of Fusarium isolates were generated using the sequences of histone gene (H3) and translation elongation factor gene (TEF-1α). Specific primers were used to confirm the presence of F. odoratissimum. The phylogenetic trees showed the rich diversity of the genus Fusarium related to Fusarium wilt, which consists of F. odoratissimum, Fusarium grosmichelii, Fusarium sacchari, and an unknown species of the Fusarium oxysporum species complex. By using Foc-TR4 specific primers, 27 isolates were confirmed as F. odoratissimum. A pathogenicity test was conducted for 30 days on five different local cultivars including, Musa acuminata (AAA, AA) and Musa paradisiaca (AAB, ABB). Although foliar symptoms showed different severity of those disease progression, vascular symptoms of the inoculated plantlet showed that infection was uniformly severe. Therefore, it can be concluded that the Fusarium oxysporum species complex related to Fusarium wilt of banana in Malaysia is rich in diversity, and F. odoratissimum has pathogenicity to local banana cultivars in Malaysia regardless of the genotype of the banana plants.


Sign in / Sign up

Export Citation Format

Share Document