Revision of the Parmelia saxatilis group in Italy based on morphological, chemical, and molecular data

Phytotaxa ◽  
2021 ◽  
Vol 512 (1) ◽  
Author(s):  
MARIA BEATRICE CASTELLANI ◽  
ELISABETTA BIANCHI ◽  
ANDREA COPPI ◽  
JURI NASCIMBENE ◽  
RENATO BENESPERI

Recent molecular studies on Parmelia revealed several new semi-cryptic and cryptic species, suggesting the existence of considerable genetic diversity within this genus that may not yet be expressed at the phenotypic level. This is the case of the two species Parmelia ernstiae and P. serrana that have been described in the P. saxatilis group from Europe and that are still poorly known in Italy. The main aim of this study is to shed light into the Italian distribution of these cryptic species on the basis of a systematic and taxonomic revision of exiccata and new specimens of the Parmelia saxatilis group collected along a biogeographical gradient through the Italian peninsula. In this revision, we combined morphological, chemical, and molecular data and evaluated their reliability for identification at the species level. Results indicate that P. saxatilis is the most widespread species and that P. ernstiae is much more widespread than previously thought. In contrast, P. serrana seems to be a rare species in Italy. Our results also indicate that the combined use of morphological and chemical data does not provide a reliable tool to discriminate the cryptic species of this group and that molecular data are thus indispensable for identification at the species level. Finally, our phylogenetic analysis supports the existence of an unrecognized diversity in parmelioid lichens that should be further investigated.

Zootaxa ◽  
2017 ◽  
Vol 4273 (3) ◽  
pp. 362
Author(s):  
LUCAS L. ZUPOLINI ◽  
TATIANA MAGALHÃES ◽  
LEONARDO G. PILEGGI ◽  
FERNANDO L. MANTELATTO

The family Portunidae Rafinesque, 1815 presents a series of taxonomic problems such as paraphyletic groups, synonymizations, and unresolved complexes of cryptic species. Arenaeus Dana, 1851, encompasses only two species with mirrored distributions along the coasts of the Americas. Despite of comprising two widespread species, there is a scarcity of information on their biology and ecology and on the relationships with other genera in the family. Because of the lack of studies comprising both species and the imprecise or erroneous taxonomic descriptions for the species of Arenaeus, we conducted a thorough taxonomic revision of the genus and used data from fragments of the 16S rRNA and the cytochrome oxidase I (COI) genes to investigate the validity of Arenaeus cribrarius (Lamarck, 1818) and Arenaeus mexicanus                 (Gerstaecker, 1856). A range of easily discernible and objective characteristics distinguish the species, including the number of rostral teeth, the number of carpal spines, and the presence of a spine on the epistome region. This last feature, although never properly addressed in the literature, was diagnostic in discriminating the taxa. Results of molecular analyses also supported the separate identity of the two species. Assemblages generated in COI analyses reflected no geographic pattern or geographic partitioning, suggesting that dispersion and gene flow could be sufficiently high to hinder genetic differentiation through the extensive distribution range of the Atlantic species, A. cribrarius. Furthermore, molecular results and morphological analyses may indicate a closer relationship among particular groups of portunids and Arenaeus. Morphology of the carapace and of the first male gonopods may be the most prominent characteristics supporting such view. We have shed light on the status of the genus Arenaeus and its members, clarified some taxonomical issues, and provide an identification key for the species.  


Phytotaxa ◽  
2018 ◽  
Vol 371 (2) ◽  
pp. 111
Author(s):  
YONGZENG ZHANG ◽  
TAO DENG ◽  
YANBO LI ◽  
XIAOSHUANG ZHANG ◽  
KOMILJON SH. TOJIBAEV ◽  
...  

Both morphological and molecular data have been used to examine the taxonomical status of Carpesium linearibracteatum (Asteraceae). We determined that C. leptophyllum var. linearibracteatum is closer to C. szechuanense and C. triste than to C. longifolium, thus not agreeing with the synonymization of this taxon and C. longifolium. We propose to elevate C. leptophyllum var. linearibracteatum to the species level as C. linearibracteatum.


2020 ◽  
Vol 14 (1) ◽  

This study aims to assess the intraspecific genetic diversity of Ixora macrophylla, a widespread species of Philippine Ixora recorded from several islands of the Philippines, and I. auriculata, an endemic species that has yet to be included in molecular studies of the Philippine Ixora. The number of haplotypes, haplotype diversity, and nucleotide diversity of 19 trnL-F and 17 ITS sequences of I. macrophylla, as well as 4 trnL-F and 4 ITS sequences of I. auriculata were obtained using DNAsp 5.10.1 software, and pairwise distances were calculated using the nucleotide Kimura 2-parameter using MEGA 6.06. Two haplotypes of trnL-F and nine haplotypes of ITS were identified in six populations of I. macrophylla. One of the two haplotypes of trnL-F was unique to the Mindoro population. One of the nine haplotypes of ITS was common among seven individuals from four populations. Intraspecific pairwise distances ranged from 0 to 0.1% for trnL-F and 0 to 0.9% for ITS. Mantel test showed weak correlations between the genetic and geographic distances for both trnL-F (r = -0.0380) and ITS (r = 0.0980) sequences. For the genetic diversity of I. auriculata, two haplotypes of trnL-F and four haplotypes of ITS were identified, with intraspecific pairwise distances ranging from 0 to 0.1% in trnL-F and 0.3 to 3.5% in ITS. The results for genetic diversity may be used to better understand the population genetics of the Philippine Ixora and provide insights for conservation.


Author(s):  
Duilio Iamonico

Background and Aims: Stellaria traditionally comprises 150-200 species, mainly distributed in the temperate regions of Eurasia and North America. Molecular studies demonstrated that Stellaria is polyphyletic and includes about 120 species. The genus has a high phenotypic variability which has led to nomenclatural disorders, making the identification of the various species difficult. A note is presented about a taxon currently accepted under the genus Stellaria -Stellaria obtusa- which should be recognized as a separate genus, here proposed as Engellaria gen. nov.Methods: This study is based on examination of specimens of American and European herbaria and analysis of relevant literature.Key results: Available molecular data show that Stellaria obtusa is not included in the Stellaria s.s. clade, but instead is basal to another clade comprising the genera Honckenya, Schiedea, and Wilhelmsia. Stellaria obtusa was, therefore, compared with these three groups and with morphologically similar apetalous members of Stellaria s.s. (S. crispa, S. media, S. pallida, and S. irrigua). The results obtained lead to the recognition of S. obtusa as a separate new North American monotypic genus. A diagnostic key of the apetalous members belonging to the American Caryophyllaceae genera is proposed. Finally, the names Stellaria obtusa and S. washingtoniana (= S. obtusa) are lectotypified based on specimens deposited, respectively, at UC (isolectotypes at GH, NY, and YU) and GH (isolectotypes at BM, CAN, CAS, CS, DOV, F, GH, K, MIN, MSC, NY, US, and VT). For the name Alsine viridula (= S. obtusa) the holotype was found at US (isotypes at CAS, F, GH, NY, OSC, RM, and UC).Conclusions: Stellaria obtusa does not belong to the genus Stellaria. The present study shows that the combined use of morphological data and phylogenetic analyses helped to clarify the taxonomic position of difficult plant groups, as in Stellaria.


2016 ◽  
Vol 107 (2) ◽  
pp. 268-280 ◽  
Author(s):  
Y. Zheng ◽  
R.X. Wu ◽  
S. Dorn ◽  
M.H. Chen

AbstractUnderstanding herbivore diversity both at the species and genetic levels is a key to effective pest management. We examined moth samples from multiple locations from a major apple growing region in China. For specimen collection, we used a pheromone trap designed to attractGrapholita molesta(Busck) (Lepidoptera: Tortricidae). Surprisingly, we found a second species captured at high proportions. Its external morphology (e.g., male genitalia and forewing coloration) was the same as forGrapholita funebranaTreitschke (Lepidoptera: Tortricidae) specimens from Europe. However, the barcode sequence of the mitochondrial gene cytochrome oxidase I (COI) diverged markedly between specimens from China and Europe, and the genetic distance value between the specimens from the two regions as estimated using the Juke-Cantor (JC) model amounted to 0.067. These morphological and molecular findings together point to a cryptic species inG. funebranafrom China. Further molecular analyses based on COI and COII genes revealed its extremely high genetic diversity, indicating that the origin of this species includes the sampling region. Moreover, molecular data suggest that this species passed through a recent population expansion. This is the first report on a cryptic species inG. funebrana, as well as the first report on its genetic diversity.


2020 ◽  
Vol 67 (2) ◽  
pp. 183-196 ◽  
Author(s):  
Bernhard Seifert

Using high-resolution stereomicroscopy and exploratory data analyses, a taxonomic revision of the cryptic species close to Plagiolepis schmitzii Forel, 1895, called Pl. schmitzii group, was conducted. Morphology was numerically recorded under highly standardised conditions considering absolute size and 16 shape, pubescence and surface characters. A key to the non-parasitic Westpalaearctic species of the ant genus Plagiolepis Mayr, 1861 is provided which firstly separates, on species group level, the Pl. pygmaea (Latreille) species group, the Pl. pallescens Forel species group and the Pl. schmitzii species group and, finally, on species level, the cryptic species of the latter group. The recognised species of the Pl. schmitzii species group are Pl. schmitzii Forel, 1895 (invasive species), Pl. barbara Santschi, 1911, Pl. atlantis Santschi, 1920 and Pl. invadens sp. nov. (invasive species) that is described as new from a supercolony in Germany. Based on morphological arguments, the taxa Pl. barbara var. madeirensis Emery, 1921, Pl. maura polygyna Santschi, 1922 and Pl. schmitzii var. tingitana Santschi, 1936 are recognised as junior synonyms of Pl. schmitzii, the taxa Pl. schmitzii crosi Santschi, 1920, Pl. pallescens var. kabyla Santschi, 1920 and Pl. perperamusSalata et al., 2018 as junior synonyms of Pl. atlantis and the taxon Pl. maura Santschi, 1920 as junior synonym of Pl. barbara. A concluding comparative section suggests that pre-adaptations for anthropogenous dispersal and transformation to supercoloniality in introduction areas are apparently common traits in Plagiolepis ants.


2017 ◽  
Vol 59 (2) ◽  
pp. 146-151
Author(s):  
Anna Tereba ◽  
Agata Konecka ◽  
Justyna A. Nowakowska

AbstractThe paper describes a number of molecular methods used in the past and now to analyze forest tree species. Taking into account the economic importance of forest trees and in view of the timber economy, wood properties and characteristics are essential factors subjected to control, observation and research. Molecular techniques that support traditional selection methods allow for genetic diversity analyses considering a range of research aspects. The development of these techniques at the turn of the last two decades has enabled wide-ranging use of molecular data in studies on forest tree populations. On the example of pine (Pinus L.), the paper presents data based on molecular studies as well as a variety of possibilities to apply the obtained results.


2021 ◽  
Vol 307 (2) ◽  
Author(s):  
Pau Carnicero ◽  
Núria Garcia-Jacas ◽  
Llorenç Sáez ◽  
Theophanis Constantinidis ◽  
Mercè Galbany-Casals

AbstractThe eastern Mediterranean basin hosts a remarkably high plant diversity. Historical connections between currently isolated areas across the Aegean region and long-distance dispersal events have been invoked to explain current distribution patterns of species. According to most recent treatments, at least two Cymbalaria species occur in this area, Cymbalaria microcalyx and C. longipes. The former comprises several intraspecific taxa, treated at different ranks by different authors based on morphological data, evidencing the need of a taxonomic revision. Additionally, some populations of C. microcalyx show exclusive morphological characters that do not match any described taxon. Here, we aim to shed light on the systematics of eastern Mediterranean Cymbalaria and to propose a classification informed by various sources of evidence. We performed molecular phylogenetic analyses using ITS, 3’ETS, ndhF and rpl32-trnL sequences and estimated the ploidy level of some taxa performing relative genome size measures. Molecular data combined with morphology support the division of traditionally delimited C. microcalyx into C. acutiloba, C. microcalyx and C. minor, corresponding to well-delimited nrDNA lineages. Furthermore, we propose to combine C. microcalyx subsp. paradoxa at the species level. A group of specimens previously thought to belong to Cymbalaria microcalyx constitute a well-defined phylogenetic and morphological entity and are described here as a new species, Cymbalaria spetae. Cymbalaria longipes is non-monophyletic, but characterized by being glabrous and diploid, unlike other eastern species. The nrDNA data suggest at least two dispersals from the mainland to the Aegean Islands, potentially facilitated by marine regressions.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1180
Author(s):  
Rafał Wawrzyniak ◽  
Wiesław Wasiak ◽  
Beata Jasiewicz ◽  
Alina Bączkiewicz ◽  
Katarzyna Buczkowska

Aneura pinguis (L.) Dumort. is a representative of the simple thalloid liverworts, one of the three main types of liverwort gametophytes. According to classical taxonomy, A. pinguis represents one morphologically variable species; however, genetic data reveal that this species is a complex consisting of 10 cryptic species (named by letters from A to J), of which four are further subdivided into two or three evolutionary lineages. The objective of this work was to develop an efficient method for the characterisation of plant material using marker compounds. The volatile chemical constituents of cryptic species within the liverwort A. pinguis were analysed by GC-MS. The compounds were isolated from plant material using the HS-SPME technique. Of the 66 compounds examined, 40 were identified. Of these 40 compounds, nine were selected for use as marker compounds of individual cryptic species of A. pinguis. A guide was then developed that clarified how these markers could be used for the rapid identification of the genetic lineages of A. pinguis. Multivariate statistical analyses (principal component and cluster analysis) revealed that the chemical compounds in A. pinguis made it possible to distinguish individual cryptic species (including genetic lineages), with the exception of cryptic species G and H. The classification of samples based on the volatile compounds by cluster analysis reflected phylogenetic relationships between cryptic species and genetic lineages of A. pinguis revealed based on molecular data.


Parasitology ◽  
2011 ◽  
Vol 138 (13) ◽  
pp. 1688-1709 ◽  
Author(s):  
STEVEN A. NADLER ◽  
GERARDO PÉREZ-PONCE DE LEÓN

SUMMARYHerein we review theoretical and methodological considerations important for finding and delimiting cryptic species of parasites (species that are difficult to recognize using traditional systematic methods). Applications of molecular data in empirical investigations of cryptic species are discussed from an historical perspective, and we evaluate advantages and disadvantages of approaches that have been used to date. Developments concerning the theory and practice of species delimitation are emphasized because theory is critical to interpretation of data. The advantages and disadvantages of different molecular methodologies, including the number and kind of loci, are discussed relative to tree-based approaches for detecting and delimiting cryptic species. We conclude by discussing some implications that cryptic species have for research programmes in parasitology, emphasizing that careful attention to the theory and operational practices involved in finding, delimiting, and describing new species (including cryptic species) is essential, not only for fully characterizing parasite biodiversity and broader aspects of comparative biology such as systematics, evolution, ecology and biogeography, but to applied research efforts that strive to improve development and understanding of epidemiology, diagnostics, control and potential eradication of parasitic diseases.


Sign in / Sign up

Export Citation Format

Share Document