Spermatogenic Apoptosis and the Involvement of the Nrf2 Pathway in Male Mice Following Exposure to Nano Titanium Dioxide

2020 ◽  
Vol 16 (3) ◽  
pp. 373-381
Author(s):  
Fashui Hong ◽  
Yingjun Zhou

Titanium dioxide nanoparticles (TiO2 NPs) are largely manufactured and extensively applied for the treatment of environmental pollution. Studies have proved that exposure to TiO2 NPs leads to toxicity of the reproductive system. However, very few studies have highlighted the involvement of nuclear factor erythroid-2 related factor 2 (Nrf2) under TiO2 NPinduced spermatogenic apoptosis. Our findings suggested that TiO2 NPs could cross the blood–testis barrier and were aggregated or deposed in spermatogenic cells, which resulted in spermatogenic apoptosis. Furthermore, exposure to TiO2 NPs caused an overproduction of reactive oxygen species and the peroxidation of lipids, proteins, and DNA. Such exposure also caused significant decreases in the activities of SOD, GSH–PX, GST, and GSH content in the testis. Importantly, exposure to TiO2 NPs resulted in an up-regulation of Keap1 expression and a down-regulation of Nrf2 and its target gene products, NQO1, HO-1, GCLC, PKC, and PI3K. The present study implies that TiO2 NPs could lead to spermatogenic apoptosis, and Nrf2 is the initial factor that responded to such reproductive toxicity by regulating the expression of antioxidative proteins.

2020 ◽  
Vol 19 (2) ◽  
pp. 133-138
Author(s):  
Wenyu Chen ◽  
Hui He

Trilobatin is a natural plant-derived glycosylated flavonoid that has been shown to exhibit multiple beneficial pharmacologic activities including protection of heart against H/R-induced cardiomyocyte injury. However, the molecular mechanisms underlying protection from H/R-induced cardiomyocyte injury remain unknown. Using H9C2 cells as a model, we examined the effect of trilobatin on H/R-induced cellular injury, apoptosis, and generation of reactive oxygen species. The results showed that trilobatin protected H9C2 cells not only from cell death and apoptosis, but also counteracted H/R-induced changes in malondialdehyde, superoxide dismutase, glutathione, and glutathione peroxidase. The evaluation of the mechanism underlying the effect of trilobatin on protection from H/R-induced cellular injury suggested changes in the regulation of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 610 ◽  
Author(s):  
Yanzhuo Kong ◽  
Kenneth J. Olejar ◽  
Stephen L. W. On ◽  
Venkata Chelikani

The gastrointestinal (GI) tract is crucial for food digestion and nutrient absorption in humans. However, the GI tract is usually challenged with oxidative stress that can be induced by various factors, such as exogenous pathogenic microorganisms and dietary alterations. As a part of gut microbiota, Lactobacillus spp. play an important role in modulating oxidative stress in cells and tissues, especially in the GI tract. Oxidative stress is linked with excessive reactive oxygen species (ROS) that can be formed by a few enzymes, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs). The redox mechanisms of Lactobacillus spp. may contribute to the downregulation of these ROS-forming enzymes. In addition, nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf-2) and nuclear factor kappa B (NF-κB) are two common transcription factors, through which Lactobacillus spp. modulate oxidative stress as well. As oxidative stress is closely associated with inflammation and certain diseases, Lactobacillus spp. could potentially be applied for early treatment and amelioration of these diseases, either individually or together with prebiotics. However, further research is required for revealing their mechanisms of action as well as their extensive application in the future.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3621
Author(s):  
Federico Pio Fabrizio ◽  
Angelo Sparaneo ◽  
Lucia Anna Muscarella

Nuclear factor erythroid 2-related factor 2 (NRF2) is the key transcription factor triggered by oxidative stress that moves in cells of the antioxidant response element (ARE)-antioxidant gene network against reactive oxygen species (ROS) cellular damage. In tumors, the NRF2 pathway represents one of the most intriguing pathways that promotes chemo- and radioresistance of neoplastic cells and its activity is regulated by genetic and epigenetic mechanisms; some of these being poorly investigated in cancer. The noncoding RNA (ncRNA) network is governed by microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) and modulates a variety of cellular mechanisms linked to cancer onset and progression, both at transcriptional and post-transcriptional levels. In recent years, the scientific findings about the effects of ncRNA landscape variations on NRF2 machines are rapidly increasing and need to be continuously updated. Here, we review the latest knowledge about the link between NRF2 and ncRNA networks in cancer, thus focusing on their potential translational significance as key tumor biomarkers.


2019 ◽  
Author(s):  
Di Zhou ◽  
Shuo Han ◽  
Tenglong Yan ◽  
Changmao Long ◽  
Jiayu Xu ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Qiong-Hui Huang ◽  
Lie-Qiang Xu ◽  
Yu-Hong Liu ◽  
Jia-Zhen Wu ◽  
Xue Wu ◽  
...  

Excessive alcohol consumption leads to serious liver injury, associating with oxidative stress and inflammatory response. Previous study has demonstrated that polydatin (PD) exerted antioxidant and anti-inflammatory effects and attenuated ethanol-induced liver damage, but the research remained insufficient. Hence, this experiment aimed to evaluate the hepatoprotective effect and potential mechanisms of PD on ethanol-induced hepatotoxicity. Our results showed that PD pretreatment dramatically decreased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) in the serum, suppressed the malonaldehyde (MDA) and triglyceride (TG) content and the production of reactive oxygen species (ROS), and enhanced the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), andalcohol dehydrogenase (ADH), and aldehyde dehydrogenase (ALDH), paralleled by an improvement of histopathology alterations. The protective effect of PD against oxidative stress was probably associated with downregulation of cytochrome P450 2E1 (CYP2E1) and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its target gene haem oxygenase-1 (HO-1). Moreover, PD inhibited the release of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) via downregulating toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB) p65. To conclude, PD pretreatment protects against ethanol-induced liver injury via suppressing oxidative stress and inflammation.


2019 ◽  
Vol 15 (6) ◽  
pp. 606-617
Author(s):  
Nourwanda M. Serour ◽  
Ahmed S.E. Hammad ◽  
Ahmed H. El-Shazly ◽  
Dina A. El-Gayar ◽  
Shaaban A. Nosier

Background: Graphene-Titanium dioxide nano-composite forms a very promising material in the field of photo-electrochemical research. Methods: In this study, a novel environment-friendly synthesis method was developed to produce well-distributed anatase nano-titanium dioxide spherical particles on the surface of graphene sheets. This novel method has great advantages over previously developed methods of producing graphenetitanium dioxide nanocomposites (GTNCs). High calcination temperature 650°C was used in the preparation of nano titanium dioxide, and chemical exfoliation for graphene synthesis and GTNC was performed by our novel method of depositing titanium dioxide nanoparticles on graphene sheets using a Y-shaped micro-reactor under a controlled pumping rate with minimal use of chemicals. Results: The physiochemical and crystallographic properties of the GTNC were confirmed by TEM, XRD, FTIR and EDX measurements, confirming process repeatability. Spherical nano-titanium dioxide was produced in the anatase phase with very high crystallinity and small particle diameters ranging from 9 nm to 25 nm, also the as prepared graphene (RGO) exhibited minimal flake folding and a high carbon content of 81.28% with a low oxygen-to-carbon atomic ratio of 0.172 and GTNCs produced by our novel method had a superior loading content, a homogeneous distribution and a 96.6% higher content of titanium dioxide particles on the graphene sheets compared with GTNCs prepared with the one-pot method. Conclusion: For its photoelectrochemical properties, chronoamperometry showed that GTNC sample (2) had a higher peak current of 60 μA compared with that of GTNC sample (1), which indicates that the separation and transfer of electron-hole pairs are better in the case of GTNC sample (2) and according to the LSV results, the generation of photocurrent in the samples can be observed through multiple on-off cycles, which indicates that the electrodes are stable and that the photocurrent is quite reversible.


Sign in / Sign up

Export Citation Format

Share Document