Effect of Yes Associated Protein 1 Silence on Proliferation and Apoptosis of Bladder Cancer Cells

2021 ◽  
Vol 11 (5) ◽  
pp. 857-863
Author(s):  
Gaoliang Wu ◽  
Chao Hao ◽  
Xueliang Qi ◽  
Jianqiang Nie

Yes Associated Protein 1 (YAP) can act as either an oncoprotein or a tumor suppressor in different cellular contexts. However, the reports about the direct role of YAP silence in bladder cancer cells are rare. We designed loss-off-function experiments to investigate the effect of YAP knockdown on bladder cancer cell proliferation, cell cycle and cell apoptosis. We examined YAP expression in human bladder cancer and paracancerous tissues using RT-qPCR, western blot and immunohisto-chemistry. YAP short hairpin RNA (shRNA) was successfully constructed and transfected into T24 cells to knockdown YAP. Cell proliferation, cell cycle and cell apoptosis were analyzed by CCK-8 and flow cytometry. We found the expression levels of YAP mRNA and protein were significantly increased in the bladder cancer tissues when compared with that in the paracancerous tissues. shRNA YAP inhibited cell proliferation, induced cell cycle arrest at G1 phase, and induced cell apoptosis. In conclusion, our findings provided the first evidence that YAP knockdown could inhibit cell proliferation and induce cell apoptosis of bladder cancer cells. YAP inhibition may be beneficial in the treatment of bladder cancer.

2018 ◽  
Vol 38 (4) ◽  
Author(s):  
Jun Li ◽  
Yan Li ◽  
Fandong Meng ◽  
Liye Fu ◽  
Chuize Kong

More and more studies have shown that long non-coding RNAs (lncRNAs) play critical roles in various biological processes of bladder cancer, including proliferation, apoptosis, migration and cell cycle arrest. LncRNA long intergenic noncoding RNA 00511 (linc00511) is one of the lncRNAs highly expressed in bladder cancer tissues and cells. However, little is known about the roles and mechanisms of linc00511 in bladder cancer. Here, we demonstrated that linc00511 was highly expressed in bladder cancer tissues and cells. Linc00511 knockdown could cause the cell proliferation suppression and cell cycle arrest, which were mediated by p18, p21, CDK4, cyclin D1 and phosphorylation Rb. Suppressed linc00511 could induce the apoptosis in T24 and BIU87 cells via activating the caspase pathway. Down-regulation of linc00511 could also suppress the migration and invasion of T24 and BIU87 cells. In addition, we found that the expression of linc00511 was negatively correlated with that of miR-15a-3p in the clinical bladder cancer samples. Further mechanistic studies showed that linc00511 knockdown induced proliferation inhibition, and apoptosis increase might be regulated through suppressing the activities of Wnt/β-catenin signaling pathway. Thus, we revealed that knockdown of linc00511 suppressed the proliferation and promoted apoptosis of bladder cancer cells through suppressing the activities of Wnt/β-catenin signaling pathway. Moreover, we suggested that linc00511 could be a potential therapeutic target and novel biomarker in bladder cancer.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aldhabi Mokhtar ◽  
Chuize Kong ◽  
Zhe Zhang ◽  
Yan Du

Abstract Objectives The aim of this study was to investigate the effect of lncRNA-SNHG15 in bladder carcinoma using cell lines experiments and the relationship between clinical characteristics and lncRNA-SNHG15 expression was analyzed. Methods Bladder cancer tissues and near-cancer tissues were collected. The real-time PCR (RT-PCR) was used to detect the expression of lncRNA-SNHG15 in tissues and cell lines. The expression of lncRNA-SNHG15 was downregulated by interference (siRNA), as detected by RT-PCR, that was used to determine the efficiency of the interference. CCK-8 and Transwell assays were used to evaluate the effect of lncRNA-SNHG15 on the proliferation and invasion capability of bladder cancer cells. The t-test was used for Statistical analyses, which were carried out using the Statistical Graph pad 8.0.1.224 software. Result The expression of lncRNA-SNHG15 was up regulated in 5637, UMUC3 and T24 cell lines compared with corresponding normal controls (P < 0.05). Up regulation was positively related to tumor stage (P = 0.015). And tumor size (P = 0.0465). The down-regulation of lncRNA-SNHG15 with siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion. Conclusion This study showed that lncRNA-SNHG15 is overexpressed in bladder cancer tissues and (5637, UMUC3 T24) cell lines. Up regulation was positively related to tumor stage (P = 0.015), and tumor size (P = 0.0465). Down-regulation of lncRNA-SNHG15 by siRNA significantly inhibited UMUC3 and T24 cell proliferation and invasion, indicating a potential molecular target for future tumor targeted therapy.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1381
Author(s):  
So Young Kim ◽  
Hyun Hwangbo ◽  
Min Yeong Kim ◽  
Seon Yeong Ji ◽  
Da Hye Kim ◽  
...  

Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.


Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 369
Author(s):  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
Eva Juengel ◽  
Felix K.-H. Chun ◽  
Igor Tsaur ◽  
...  

Bladder cancer patients whose tumors develop resistance to cisplatin-based chemotherapy often turn to natural, plant-derived products. Beneficial effects have been particularly ascribed to polyphenols, although their therapeutic relevance when resistance has developed is not clear. The present study evaluated the anti-tumor potential of polyphenol-rich olive mill wastewater (OMWW) on chemo-sensitive and cisplatin- and gemcitabine-resistant T24, RT112, and TCCSUP bladder cancer cells in vitro. The cells were treated with different dilutions of OMWW, and tumor growth and clone formation were evaluated. Possible mechanisms of action were investigated by evaluating cell cycle phases and cell cycle-regulating proteins. OMWW profoundly inhibited the growth and proliferation of chemo-sensitive as well as gemcitabine- and cisplatin-resistant bladder cancer cells. Depending on the cell line and on gemcitabine- or cisplatin-resistance, OMWW induced cell cycle arrest at different phases. These differing phase arrests were accompanied by differing alterations in the CDK-cyclin axis. Considerable suppression of the Akt-mTOR pathway by OMWW was observed in all three cell lines. Since OMWW blocks the cell cycle through the manipulation of the cyclin-CDK axis and the deactivation of Akt-mTOR signaling, OMWW could become relevant in supporting bladder cancer therapy.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Frederik Roos ◽  
Katherina Binder ◽  
Jochen Rutz ◽  
Sebastian Maxeiner ◽  
August Bernd ◽  
...  

The natural compound curcumin exerts antitumor properties in vitro, but its clinical application is limited due to low bioavailability. Light exposure in skin and skin cancer cells has been shown to improve curcumin bioavailability; thus, the object of this investigation was to determine whether light exposure might also enhance curcumin efficacy in bladder cancer cell lines. RT112, UMUC3, and TCCSUP cells were preincubated with low curcumin concentrations (0.1-0.4μg/ml) and then exposed to 1.65 J/cm2visible light for 5 min. Cell growth, cell proliferation, apoptosis, cell cycle progression, and cell cycle regulating proteins along with acetylation of histone H3 and H4 were investigated. Though curcumin alone did not alter cell proliferation or apoptosis, tumor cell growth and proliferation were strongly blocked when curcumin was combined with visible light. Curcumin-light caused the bladder cancer cells to become arrested in different cell phases: G0/G1 for RT112, G2/M for TCCSUP, and G2/M- and S-phase for UMUC3. Proteins of the Cdk-cyclin axis were diminished in RT112 after application of 0.1 and 0.4μg/ml curcumin. Cell cycling proteins were upregulated in TCCSUP and UMUC3 in the presence of 0.1μg/ml curcumin-light but were partially downregulated with 0.4μg/ml curcumin. 0.4μg/ml (but not 0.1μg/ml) curcumin-light also evoked late apoptosis in TCCSUP and UMUC3 cells. H3 and H4 acetylation was found in UMUC3 cells treated with 0.4μg/ml curcumin alone or with 0.1μg/ml curcumin-light, pointing to an epigenetic mechanism. Light exposure enhanced the antitumor potential of curcumin on bladder cancer cells but by different molecular action modes in the different cell lines. Further studies are necessary to evaluate whether intravesical curcumin application, combined with visible light, might become an innovative tool in combating bladder cancer.


2020 ◽  
Author(s):  
Dali Han ◽  
Bin Xiong ◽  
Xiangxiang Zhang ◽  
Chaohu Chen ◽  
Zhiqiang Yao ◽  
...  

Abstract Background Bladder cancer is the most common malignancy in urinary system, but the therapeutic targets remain elusive. This study aims to reveal the relationship between AMIGO2 and proliferation, migration, drug-resistance and tumorigenicity of bladder cancer, and explore the potential molecular mechanisms. Methods The expression of AMIGO2 in human bladder cancer tissues is measured by qRT-PCR and immunohistochemistry (IHC). Stable AMIGO2 knockdown cell lines T24 and 5637 were established by lentivirus transfection. Cell viability assay (CCK-8 assay) was used to determine cell proliferation, flow cytometry analysis was utilized to detect cell cycle, and wound healing assay was proceeded to test migration ability of bladder cancer cells. Chemosensitivity to cisplatin was measured by CCK-8 assay. Xenograft mouse model was established for investigating the effect of AMIGO2 on tumor formation in vivo. The RNA Sequencing technology was used to explore differentially expressed genes (DEGs) between knockdown group and negative control group of T24. Bioinformatics analysis upon the results of RNA-Seq was proceeded to understand underlying mechanisms. Results AMIGO2 was upregulated in bladder cancer cells and tissues. Inhibited expression of AMIGO2 suppresses cell proliferation and migration, which might be mediated by cell cycle arrest in G1 phase. AMIGO2 could reduce chemoresistance to cisplatin in bladder cancer cells. Low AMIGO2 expression inhibited tumorigenicity of T24 in nude mice. 917 DEGs were identified by RNA-Sequencing technology and bioinformatics analysis. The DEGs were mainly enriched in cell-cell adhesion, ATP-binding cassette transporters (ABC transporters), PPAR signaling pathway and some other pathways. Among ten hub genes, four of them might be associated with the prognosis of bladder cancer patients. Conclusion AMIGO2 is overexpressed in bladder cancer cells and tissues and serves as an oncogene in bladder cancer. It also reduces chemoresistance to cisplatin. The process might be regulated by particular pathways including ABC transporters and PPAR signaling pathway. Four hub genes might be associated with prognosis of bladder cancer patients.


Sign in / Sign up

Export Citation Format

Share Document