Composition Controlled Synthesis and Raman Analysis of Ge-Rich SixGe1–x Nanowires

2008 ◽  
Vol 8 (6) ◽  
pp. 3153-3157 ◽  
Author(s):  
P. Meduri ◽  
G. U. Sumanasekera ◽  
Z. Chen ◽  
M. K. Sunkara

Here, we report the synthesis of SixGe1–x nanowires with x values ranging from 0 to 0.5 using bulk nucleation and growth from larger Ga droplets. Room temperature Raman spectroscopy is shown to determine the composition of the as-synthesized SixGe1–x nanowires. Analysis of peak intensities observed for Ge (near 300 cm–1) and the Si-Ge alloy (near 400 cm–1) allowed accurate estimation of composition compared to that based on the absolute peak positions. The results showed that the fraction of Ge in the resulting SixGe1–x alloy nanowires is controlled by the vapor phase composition of Ge.

2013 ◽  
Vol 683 ◽  
pp. 647-650
Author(s):  
Yi Ping Wu

In this paper, a kind leaf of fresh plant  bamboo, was used as template to control the growth of calcium carbonate at room temperature. The products were characterized by SEM, XRD and FTIR. The nucleation and growth of aragonite crystals were induced by making use of the bamboo leaves containing a lot of biomacromolecules in the presence of Mg2+. Different morphologies and structures of the products were obtained by adjusting the concentration ratio of Mg2+ to Ca2+. The results show that crystal morphologies of CaCO3 produced on the bamboo leaves and glass in the presence of Mg2+ were changed. The products with self-assembly and self-similarity superstructures were gained in bamboo leaves/Mg2+ system. This study may supply a new method for the synthesis of inorganic materials with superstructures.


Author(s):  
G. M. Michal ◽  
T. K. Glasgow ◽  
T. J. Moore

Large additions of B to Fe-Ni alloys can lead to the formation of an amorphous structure, if the alloy is rapidly cooled from the liquid state to room temperature. Isothermal aging of such structures at elevated temperatures causes crystallization to occur. Commonly such crystallization pro ceeds by the nucleation and growth of spherulites which are spherical crystalline bodies of radiating crystal fibers. Spherulite features were found in the present study in a rapidly solidified alloy that was fully crysstalline as-cast. This alloy was part of a program to develop an austenitic steel for elevated temperature applications by strengthening it with TiB2. The alloy contained a relatively large percentage of B, not to induce an amorphous structure, but only as a consequence of trying to obtain a large volume fracture of TiB2 in the completely processed alloy. The observation of spherulitic features in this alloy is described herein. Utilization of the large range of useful magnifications obtainable in a modern TEM, when a suitably thinned foil is available, was a key element in this analysis.


Author(s):  
S.K. Streiffer ◽  
C.B. Eom ◽  
J.C. Bravman ◽  
T.H. Geballet

The study of very thin (<15 nm) YBa2Cu3O7−δ (YBCO) films is necessary both for investigating the nucleation and growth of films of this material and for achieving a better understanding of multilayer structures incorporating such thin YBCO regions. We have used transmission electron microscopy to examine ultra-thin films grown on MgO substrates by single-target, off-axis magnetron sputtering; details of the deposition process have been reported elsewhere. Briefly, polished MgO substrates were attached to a block placed at 90° to the sputtering target and heated to 650 °C. The sputtering was performed in 10 mtorr oxygen and 40 mtorr argon with an rf power of 125 watts. After deposition, the chamber was vented to 500 torr oxygen and allowed to cool to room temperature. Because of YBCO’s susceptibility to environmental degradation and oxygen loss, the technique of Xi, et al. was followed and a protective overlayer of amorphous YBCO was deposited on the just-grown films.


Author(s):  
J. L. Batstone ◽  
D.A. Smith

Recrystallization of amorphous NiSi2 involves nucleation and growth processes which can be studied dynamically in the electron microscope. Previous studies have shown thatCoSi2 recrystallises by nucleating spherical caps which then grow with a constant radial velocity. Coalescence results in the formation of hyperbolic grain boundaries. Nucleation of the isostructural NiSi2 results in small, approximately round grains with very rough amorphous/crystal interfaces. In this paper we show that the morphology of the rccrystallizcd film is dramatically affected by variations in the stoichiometry of the amorphous film.Thin films of NiSi2 were prepared by c-bcam deposition of Ni and Si onto Si3N4, windows supported by Si substrates at room temperature. The base pressure prior to deposition was 6 × 107 torr. In order to investigate the effect of stoichiomctry on the recrystallization process, the Ni/Si ratio was varied in the range NiSi1.8-2.4. The composition of the amorphous films was determined by Rutherford Backscattering.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yuchen Deng ◽  
Yaming Zhang ◽  
Nanlong Zhang ◽  
Qiang Zhi ◽  
Bo Wang ◽  
...  

Pure dense silicon carbide (SiC) ceramics were obtained via the high-temperature physical vapor transport (HTPVT) method using graphite paper as the growth substrate. The phase composition, the evolution of microstructure, the thermal diffusivity and thermal conductivity at RT to 200∘C were investigated. The obtained samples had a relative density of higher than 98.7% and a large grain size of 1[Formula: see text]mm, the samples also had a room-temperature thermal conductivity of [Formula: see text] and with the temperature increased to 200∘C, the thermal conductivity still maintained at [Formula: see text].


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 733
Author(s):  
Domenica Donia ◽  
Elvira Maria Bauer ◽  
Mauro Missori ◽  
Ludovica Roselli ◽  
Daniele Cecchetti ◽  
...  

ZnO has many technological applications which largely depend on its properties, which can be tuned by controlled synthesis. Ideally, the most convenient ZnO synthesis is carried out at room temperature in an aqueous solvent. However, the correct temperature values are often loosely defined. In the current paper, we performed the synthesis of ZnO in an aqueous solvent by varying the reaction and drying temperatures by 10 °C steps, and we monitored the synthesis products primarily by XRD). We found out that a simple direct synthesis of ZnO, without additional surfactant, pumping, or freezing, required both a reaction (TP) and a drying (TD) temperature of 40 °C. Higher temperatures also afforded ZnO, but lowering any of the TP or TD below the threshold value resulted either in the achievement of Zn(OH)2 or a mixture of Zn(OH)2/ZnO. A more detailed Rietveld analysis of the ZnO samples revealed a density variation of about 4% (5.44 to 5.68 gcm−3) with the synthesis temperature, and an increase of the nanoparticles’ average size, which was also verified by SEM images. The average size of the ZnO synthesized at TP = TD = 40 °C was 42 nm, as estimated by XRD, and 53 ± 10 nm, as estimated by SEM. For higher synthesis temperatures, they vary between 76 nm and 71 nm (XRD estimate) or 65 ± 12 nm and 69 ± 11 nm (SEM estimate) for TP =50 °C, TD = 40 °C, or TP = TD = 60 °C, respectively. At TP = TD = 30 °C, micrometric structures aggregated in foils are obtained, which segregate nanoparticles of ZnO if TD is raised to 40 °C. The optical properties of ZnO obtained by UV-Vis reflectance spectroscopy indicate a red shift of the band gap by ~0.1 eV.


2007 ◽  
Vol 336-338 ◽  
pp. 1236-1238
Author(s):  
Chang Ming Xu ◽  
Shi Wei Wang ◽  
Xiao Xian Huang ◽  
Jing Kun Guo

The influence of pressure on the crystallization behavior in SiO2f/SiO2 composites hotpressed at 1350°C was studied. The crystalline phase composition analysis on SiO2f/SiO2 composites revealed that the formation of cristobalite was promoted when the hot-pressing pressure ≤ 12 MPa, however suppressed with higher pressure applied. It can be ascribed to the nucleation mechanism change from surface nucleation to bulk nucleation. Analysis on relative density as well as fracture microstructure of SiO2f/SiO2 composites confirmed the conclusion.


2021 ◽  
pp. 138442
Author(s):  
Volodymyr M. Hiiuk ◽  
Karl Ridier ◽  
Il'ya A. Gural'skiy ◽  
Alexander A. Golub ◽  
Igor O. Fritsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document