Opportunities for Low Cost Processing of Erbium 8-Quinolinolates for Active Integrated Photonic Applications

2016 ◽  
Vol 16 (4) ◽  
pp. 3360-3363 ◽  
Author(s):  
Stefano Penna ◽  
Leonardo Mattiello ◽  
Silvia Di Bartolo ◽  
Angelo Pizzoleo ◽  
Vincenzo Attanasio ◽  
...  

Erbium-doped organic emitters are promising active materials for Photonic Integrated Circuits (PICs) due to their emission shown at 1550 nm combined to the potential low cost processing. In particular, Erbium Quinoline (ErQ) gained a strong interest in the last decade for the good emission efficiency. This contribution reports the results derived from the application of ErQ as active core material within a buried optical waveguide, following the development of a purposed optical process to control the refractive index of ErQ and then to define a patterned structure from a single thin film deposition step. The reported results show the potential of Er-doped organic materials for low cost processing and application to planar PICs.

2021 ◽  
Vol 16 (2) ◽  
pp. 1-11
Author(s):  
José Enrique Eirez Izquierdo ◽  
José Diogo da Silva Oliveira ◽  
Vinicius Augusto Machado Nogueira ◽  
Dennis Cabrera García ◽  
Marco Roberto Cavallari ◽  
...  

This work is focused on the bias stress (BS) effects in Organic Thin-Film Transistors (OTFTs) from poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) on both highly-doped Si and glass substrates. While the former had a thermally-grown SiO2 dielectric, the latter demanded an alternative dielectric that should be capable to withstand bottom contact lithography, as well as semiconducting thin-film deposition. In addition, it should represent one more step towards flexible electronics. In order to do that, poly(4-vinylphenol) (PVP) was blended to poly(melamine-co-formaldehyde) methylated (PMF). OTFTs on glass with a cross-linked polymer dielectric had a charge carrier mobility (μ) of 4.0x10-4 cm2/Vs, threshold voltage (VT) of 18 V, current modulation (ION/OFF) higher than 1x102, and subthreshold slope (SS) of -7.7 V/dec. A negative BS shifted VT towards negative values and produced an increase in ION/OFF. A positive BS, on the other hand, produced the opposite effect only for OTFTs on Si. This is believed to be due to a higher trapping at the PVP:PMF interface with PBTTT-C14. Modeling the device current along time by a stretched exponential provided shorter time constants of ca. 105 s and higher exponents of 0.7–0.9 for devices on glass. Due to the presence of increased BS effects, the application of organic TFTs based on PVP:PMF as flexible sensors will require compensating circuits, lower voltages or less measurements in time. Alternatively, BS effects could be reduced by a dielectric surface treatment.


2021 ◽  
pp. 2150081
Author(s):  
ERMAN ERDOGAN

In this study, spin coating, which is a chemical film layer thin film deposition method, was used for coronene films that were grown on Si substrates annealed at 325, 350 and 375[Formula: see text]K to examine the impacts on the optical properties of films. This method allows for easy control of the deposition parameters such as concentration, temperature and time as well as enables the film growth at low cost. Optical (UV–Vis) spectral measurements in the wavelength range from 200[Formula: see text]nm to 800[Formula: see text]nm were used to extract the bandgap information and to calculate various optical parameters of the spin-coated coronene films. The electronic transitions on the absorption of photons of suitable energy are of indirect allowed type. The corresponding optical bandgap ([Formula: see text]) was determined. Complex dielectric constants, dissipation factor, optical and electrical conductances and refractive index of coronene films were analyzed as a function of temperature. As the film annealing temperature was increased, the dielectric constants and the refractive index values increased, whereas the optical bandgap and electrical and optical conductivity values decreased.


2014 ◽  
Vol 70 (1) ◽  
pp. 142-148 ◽  
Author(s):  
K. Rubešová ◽  
T. Hlásek ◽  
V. Jakeš ◽  
P. Matějka ◽  
J. Oswald ◽  
...  

2021 ◽  
Vol 11 (24) ◽  
pp. 11689
Author(s):  
Mritunjaya Parashar ◽  
Anupama B. Kaul

During recent years, power conversion efficiencies (PCEs) of organic-inorganic halide perovskite solar cells (PSCs) have shown remarkable progress. The emergence of various thin film deposition processes to produce perovskite films, notably using solution processing techniques, can be credited in part for this achievement. The engineering of chemical precursors using solution processing routes is a powerful approach for enabling low-cost and scalable solar fabrication processes. In the present study, we have conducted a systematic study to tune the equimolar precursor ratio of the organic halide (methylammonium iodide; MAI) and metal halide (lead iodide; PbI2) in a fixed solvent mixture of N,N-dimethylformamide (DMF):dimethylsulfoxide (DMSO). The surface morphology, optical characteristics, and crystallinity of the films produced with these four distinct solutions were investigated, and our analysis shows that the MAI:PbI2 (1.5:1.5) film is optimal under the current conditions. The PSCs fabricated from the (1.5:1.5) formulation were then integrated into the n-i-p solar cell architecture on fluorine-doped tin oxide (FTO) substrates, which exhibited a PCE of ~14.56%. Stability testing on this PSC device without encapsulation at 29 °C (ambient temperature) and 60% relative humidity (RH) under one-sun illumination while keeping the device at its maximum power point showed the device retained ~60% of initial PCE value after 10 h of continuous operation. Moreover, the recombination analysis between all four formulations showed that the bimolecular recombination and trap-assisted recombination appeared to be suppressed in the more optimal (1.5:1.5) PSC device when compared to the other formulations used in the n-i-p PSC architecture.


2021 ◽  
Vol 23 (09) ◽  
pp. 1196-1206
Author(s):  
C.S.A. Raj ◽  
◽  
S. Sebastian ◽  
Susai Rajendran ◽  
◽  
...  

Cu2ZnSnS4 generally abridged as CZTS is a potential material for economical thin film solar cells, due to its appropriate band gap energy of around 1.5 eV and great absorption coefficient of above 104 cm-1. All the constituents of this material are plentiful in the earth’s crust, and they are non-hazardous making it an elegant alternative. Subsequent to the early achievement of the CZTS based solar cell with its light to electrical conversion efficiency of 0.6%, significant advancement in this research area has been attained, particularly in the last seven years. Currently, the conversion effectiveness of the CZTS thin film solar cell has enhanced to 24%. More than 500 papers on CZTS have been available and the greater part of these converses the preparation of CZTS thin films by diverse methods. Until now, many physical and chemical methods have been engaged for preparing CZTS thin films. Amongst them, spray pyrolysis is a flexible deposition technique. Spray pyrolysis is a simple deposition technique that finds use in widespread areas of thin film deposition research. This method is appropriate for depositing good quality films with low cost, clean deposition, and simplicity and flexibility in the manufacturing design. This script, reviews the synthesis of CZTS semiconductor thin films deposited by spray pyrolysis. This analysis initiates with a portrayal of the spray pyrolysis system, and then establish the CZTS and preparation of the CZTS precursor for coating. A review of spray pyrolysis of CZTS thin films are discussed in detail. To conclude, we present perspectives for advancements in spray pyrolysis for a CZTS based solar cell absorber layer.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1691 ◽  
Author(s):  
Yuan-Fong Chou Chau ◽  
Kuan-Hung Chen ◽  
Hai-Pang Chiang ◽  
Chee Ming Lim ◽  
Hung Ji Huang ◽  
...  

In this paper, a periodic metallic–dielectric nanorod array which consists of Si nanorods coated with 30 nm Ag thin film set in a hexagonal configuration is fabricated and characterized. The fabrication procedure is performed by using nanosphere lithography with reactive ion etching, followed by Ag thin-film deposition. The mechanism of the surface and gap plasmon modes supported by the fabricated structure is numerically demonstrated by the three-dimensional finite element method. The measured and simulated absorptance spectra are observed to have a same trend and a qualitative fit. Our fabricated plasmonic sensor shows an average sensitivity of 340.0 nm/RIU when applied to a refractive index sensor ranging from 1.0 to 1.6. The proposed substrates provide a practical plasmonic nanorod-based sensing platform, and the fabrication methods used are technically effective and low-cost.


2019 ◽  
Vol 891 ◽  
pp. 195-199
Author(s):  
Theerapol Thurakitseree ◽  
Chupong Pakpum

According to their wonderful properties, carbon nanotubes (CNTs) have been well known for decades. The synthesis process and catalyst deposition method have also drawn attention to control the nanotube structure and properties. Sputtering method is then one promising option to grow the nanotubes in mass production. This method is, however, still costly. Here, we have presented a simple low-cost custom-made DC magnetron sputtering for catalyst thin film deposition. Three different metal thin films (Fe, Ni, Cu) deposited on Si substrates have been employed to investigate nanotube production. Prior to deposition of the catalysts, Al was used as supporting layer. (Al/Fe, Al/Ni, Al/Cu). CNTs were grown by chemical vapor deposition process at 800°C. Ethanol was preliminary used as a carbon source. It was found that CNTs could be successfully grown from only Al/Ni catalysts in our system with the diameter of approximately 200 nm, where the rest of samples were not observed. In addition, vertical-aligned CNTs with the thickness of about 10 μm could be obtained when acetylene was replaced instead of ethanol with reducing partial pressure of the feedstock. A large D-band at 1338 cm-1 with broader G-band at 1582 cm-1 from Raman spectra give a rise to multi layers growth of sp2 carbon walls. Such dimension suggests that it is the characteristic of multi-walled carbon nanotubes.


Author(s):  
Melissa Dutter ◽  
Kyle Davis ◽  
Robert Spelman ◽  
Joel Groetsema ◽  
Keith Hutchison ◽  
...  

1999 ◽  
Vol 597 ◽  
Author(s):  
A. Polman

AbstractErbium-doped planar optical amplifiers can find numerous applications in photonic integrated circuits operating at 1.5 μm. The challenge is to fabricate these devices with high gain, operating at low pump power, and having small overall size. In this paper a review is given of our recent work in the area of Er-doped waveguide materials and amplifiers based on three materials classes: oxide films (A12O3, Y2O3, SiO2), polymers, and silicon.


Sign in / Sign up

Export Citation Format

Share Document