Non-Isothermal Decomposition Kinetic of Polypropylene/Hydrotalcite Composite

2019 ◽  
Vol 19 (11) ◽  
pp. 7493-7501 ◽  
Author(s):  
Sheng Xu ◽  
Min Zhang ◽  
Siyu Li ◽  
Moyu Yi ◽  
Shigen Shen ◽  
...  

P3O5-10 pillared Mg/Al hydrotalcite (HTs) as a functional fire-retarding filler was successfully prepared by impregnation-reconstruction, where the HTs was used to prepare polypropylene (PP) and HTs composite (PP/HTs). Thermal decomposition was crucial for correctly identifying the thermal behavior for the PP/HTs, and studied using thermogravimetry (TG) at different heating rates. Based on single TG curves and Málek method, as well as 41 mechanism functions, the thermal decompositions of the PP/HTs composite and PP in nitrogen atmosphere were studied under non-isothermal conditions. The mechanism functions of the thermal decomposition reactions for the PP/HTs composite and PP were separately “chemical reaction F3” and “phase boundary reaction R2,” which were also in good agreement with corresponding experimental data. It was found that the addition of the HTs increased the apparent activation energy Ea of the PP/HTs comparing to the PP, which improved the thermal stability of the polypropylene. A difference in the set of kinetic and thermodynamic parameters was also observed between the PP/HTs and PP, particularly with respect to lower ΔS≠ value assigned to higher thermal stability of the PP/HTs composite.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2560
Author(s):  
Jianwen Meng ◽  
Yong Pan ◽  
Fan Yang ◽  
Yanjun Wang ◽  
Zhongyu Zheng ◽  
...  

The thermal stability and decomposition kinetics analysis of 1-alkyl-2,3-dimethylimidazole nitrate ionic liquids with different alkyl chains (ethyl, butyl, hexyl, octyl and decyl) were investigated by using isothermal and nonisothermal thermogravimetric analysis combined with thermoanalytical kinetics calculations (Kissinger, Friedman and Flynn-Wall-Ozawa) and density functional theory (DFT) calculations. Isothermal experiments were performed in a nitrogen atmosphere at 240, 250, 260 and 270 °C. In addition, the nonisothermal experiments were carried out in nitrogen and air atmospheres from 30 to 600 °C with heating rates of 5, 10, 15, 20 and 25 °C/min. The results of two heating modes, three activation energy calculations and density functional theory calculations consistently showed that the thermal stability of 1-alkyl-2,3-dimethylimidazolium nitrate ionic liquids decreases with the increasing length of the alkyl chain of the substituent on the cation, and then the thermal hazard increases. This study could provide some guidance for the safety design and use of imidazolium nitrate ionic liquids for engineering.


Author(s):  
Konstantin G. Gorbovskiy ◽  
Alena S. Ryzhova ◽  
Andrey M. Norov ◽  
Denis A. Pagaleshkin ◽  
Valentina N. Kalinina ◽  
...  

Complex mineral ammonium nitrate-based fertilizers are complex multicomponent salt systems possessing low thermal stability and prone to self-sustaining decomposition. This leads to the need to increase the requirements for fire and explosion safety in their manufacture, storage and transportation, caused by the fact that ammonium nitrate is a solid oxidant able to support a combustion, and its heating in confined space can lead to detonation. Components that make up such fertilizers can both reduce (phosphates and ammonium sulfate) and accelerate (chlorine compounds) decomposition of ammonium nitrate. Thus, the thermal stability of fertilizers based on ammonium nitrate largely depends on the ratio of the components that make up its composition or formed as a result of the chemical reaction. The simplest way to reduce the content of ammonium nitrate and increase the thermal stability of fertilizer without changing the content of essential nutrients is to increase the degree of phosphoric acid ammoniation. In this paper, the phase composition change of grade 22:11:11 nitrogen-phosphorus-potassium fertilizer obtained with different ammoniation degree in the process of thermal decomposition was studied by X-ray phase analysis. To obtain this fertilizer, wet-process phosphoric acid obtained sulfuric acid attack of the Khibin apatite concentrate by a hemihydrate method is used. It is shown that an increase in the ammoniation degree has a significant effect on the exothermic decomposition of ammonium nitrate and the amount of material that is released into the gas phase. The phases formed at each stage of the decomposition are determined.Forcitation:Gorbovskiy K.G., Ryzhova A.S., Norov A.M., Pagaleshkin D.A., Kalinina V.N., Mikhaylichenko A.I. Study of thermal decomposition products of nitrogen-phosphorus-potassium fertilizers based on ammonium nitrate by X-ray diffractuon. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 1. P. 72-77


2018 ◽  
Vol 39 (4) ◽  
pp. 21
Author(s):  
Gilbert Bannach ◽  
Rafael R. Almeida ◽  
Luis G. Lacerda ◽  
Egon Schnitzler ◽  
Massao Ionashiro

Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.


2018 ◽  
Vol 19 (12) ◽  
pp. 3723 ◽  
Author(s):  
Shaoyun Chen ◽  
Min Xiao ◽  
Luyi Sun ◽  
Yuezhong Meng

The terpolymerization of carbon dioxide (CO2), propylene oxide (PO), and cyclohexene oxide (CHO) were performed by both random polymerization and block polymerization to synthesize the random poly (propylene cyclohexene carbonate) (PPCHC), di-block polymers of poly (propylene carbonate–cyclohexyl carbonate) (PPC-PCHC), and tri-block polymers of poly (cyclohexyl carbonate–propylene carbonate–cyclohexyl carbonate) (PCHC-PPC-PCHC). The kinetics of the thermal degradation of the terpolymers was investigated by the multiple heating rate method (Kissinger-Akahira-Sunose (KAS) method), the single heating rate method (Coats-Redfern method), and the Isoconversional kinetic analysis method proposed by Vyazovkin with the data from thermogravimetric analysis under dynamic conditions. The values of ln k vs. T−1 for the thermal decomposition of four polymers demonstrate the thermal stability of PPC and PPC-PCHC are poorer than PPCHC and PCHC-PPC-PCHC. In addition, for PPCHC and PCHC-PPC-PCHC, there is an intersection between the two rate constant lines, which means that, for thermal stability of PPCHC, it is more stable than PCHC-PPC-PCHC at the temperature less than 309 °C and less stable when the decomposed temperature is more than 309 °C. Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and thermogravimetric analysis/infrared spectrometry (TG/FTIR) techniques were applied to investigate the thermal degradation behavior of the polymers. The results showed that unzipping was the main degradation mechanism of all polymers so the final pyrolysates were cyclic propylene carbonate and cyclic cyclohexene carbonate. For the block copolymers, the main chain scission reaction first occurs at PC-PC linkages initiating an unzipping reaction of PPC chain and then, at CHC–CHC linkages, initiating an unzipping reaction of the PCHC chain. That is why the T−5% of di-block and tri-block polymers were not much higher than that of PPC while two maximum decomposition temperatures were observed for both the block copolymer and the second one were much higher than that of PPC. For PPCHC, the random arranged bulky cyclohexane groups in the polymer chain can effectively suppress the backbiting process and retard the unzipping reaction. Thus, it exhibited much higher T−5% than that of PPC and block copolymers.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 644 ◽  
Author(s):  
Farimah Tikhani ◽  
Shahab Moghari ◽  
Maryam Jouyandeh ◽  
Fouad Laoutid ◽  
Henri Vahabi ◽  
...  

For the first time, nano-scale aluminum hypophosphite (AlPO2) was simply obtained in a two-step milling process and applied in preparation of epoxy nanocomposites varying concentration (0.1, 0.3, and 0.5 wt.% based on resin weight). Studying the cure kinetics and thermal stability of these nanocomposites would pave the way toward the design of high-performance nanocomposites for special applications. Scanning electron microscopy (SEM) and transmittance electron microscopy (TEM) revealed AlPO2 particles having domains less than 60 nm with high potential for agglomeration. Excellent (at heating rate of 5 °C/min) and Good (at heating rates of 10, 15 and 20 °C/min) cure states were detected for nanocomposites under nonisothermal differential scanning calorimetry (DSC). While the dimensionless curing temperature interval (ΔT*) was almost equal for epoxy/AlPO2 nanocomposites, dimensionless heat release (ΔH*) changed by densification of polymeric network. Quantitative cure analysis based on isoconversional Friedman and Kissinger methods gave rise to the kinetic parameters such as activation energy and the order of reaction as well as frequency factor. Variation of glass transition temperature (Tg) was monitored to explain the molecular interaction in the system, where Tg increased from 73.2 °C for neat epoxy to just 79.5 °C for the system containing 0.1 wt.% AlPO2. Moreover, thermogravimetric analysis (TGA) showed that nanocomposites were thermally stable.


1998 ◽  
Vol 554 ◽  
Author(s):  
J. M. Pelletier ◽  
Y. Jacquemard ◽  
J. Perez ◽  
R. Perrier de la Bathie

AbstractTwo Zr-base bulk metallic glasses were investigated in the present work. DSC experiments were performed at different heating rates (dT/dt). Evolution of the characteristic temperatures, glass transition and onset of crystallisation, were determined as a function of dT/dt. Evolution of shear elastic modulus and internal friction are measured as a function of temperature and resulting microstructural evolution; these evolutions are related to variation of the atomic mobility.


2011 ◽  
Vol 311-313 ◽  
pp. 1065-1070
Author(s):  
Guo Lan Huan ◽  
Jian Li Liu ◽  
Qi Yun Du ◽  
Xiao Yu Hu

In this article, the thermal stability of PU/PVDF blend was investigated by thermogravimetry (TG), and their rheological property was studied through testing and analyzing the rheological curves. The results showed that, with the increase in PVDF content, the thermal decomposition temperature of PU/PVDF blend increased, and by fitting relevant data to thermal decomposition dynamic equations, it was found that thermal decomposition activation energy of the blend increased gradually, i.e. the thermal stability of the blend increased gradually. Meantime, based on the curves of shear stress vs. shear rate of the blend at 180°C and 200°C, it was shown that for PU/PVDF blend, with the decrease of temperature and the increase in PVDF content, the non-Newtonian index decreased, while the viscosity of the blend increased.


Sign in / Sign up

Export Citation Format

Share Document