Preparation of Pd/GO/Cu Electrode and Its Electrochemical Degradation for 2,4-Dichlorophenol

2020 ◽  
Vol 20 (6) ◽  
pp. 3604-3609
Author(s):  
Jian Zhang ◽  
Yuting Jiang ◽  
Bing Wang ◽  
Lanhe Zhang ◽  
Zheng Li ◽  
...  

Chlorinated aromatic compounds (CACs) are a class of persistent organic pollutants, which have serious damage to water environment due to their own stable structure. But a good many of CACs were abandoned because of their tremendous yields and wide applications, so it is urgent to find the effective degradation methods for CACs. The electrochemical method is supposed to be a simple, environmentally friendly and effective pathway to degrade CACs. In this paper, a Pd/GO/Cu composite electrode was prepared by a combination of impregnation method and constant current electrodeposition method, which showed good electrochemical degradation efficiency for the 2,4-dichlorophenol. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface structure, functional group composition, crystal structure and surface element valence of the electrode. Moreover, the stability of the electrode was investigated, and the preparation conditions of the electrode were optimized.

BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 7193-7212 ◽  
Author(s):  
Liangcai Wang ◽  
Yishuang Wu ◽  
Shasha Liu ◽  
Yimeng Zhang ◽  
Yu Chen ◽  
...  

Coconut shell activated carbon (AC) loaded with MnO2 was tested as an adsorbent for formaldehyde. Preparation conditions of MnO2-loaded AC (MnO2-AC) were optimized. The resulting AC and MnO2-AC were characterized by scanning electron microscopy, Brunauer-Emmet-Teller analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometry, and X-ray diffraction. The results showed that the adsorption efficiency of formaldehyde (3.5 mg/L) by MnO2-AC (concentration of manganese nitrate/sodium carbonate was 0.3 mol/L, impregnation oscillation time of 4 h, calcination temperature and time of 350 C and 4 h, respectively) was 93.1%, which increased by 251% compared to that of the AC. The adsorption equilibrium of MnO2-AC was achieved after 4 h. With increasing dosage of MnO2-AC, the rate of increasing of the adsorption efficiency became more gradual. The adsorption process of the formaldehyde solution with a low concentration fit the Langmuir adsorption isothermal model, where the adsorption capacity was 9.22 mg/g. The stability and regenerability of MnO2-AC were good.


2016 ◽  
Vol 73 (11) ◽  
pp. 2747-2753 ◽  
Author(s):  
Wusong Kong ◽  
Hongxia Qu ◽  
Peng Chen ◽  
Weihua Ma ◽  
Huifang Xie

In this study, Cu2O-CuO/ZSM-5 nanocomposite was synthesized by the impregnation method, and its catalytic performance for the destruction of AO7 in aqueous solutions was investigated. The morphology, structure and surface element valence state of Cu2O-CuO/ZSM-5 were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The operating conditions on the degradation of AO7 by Cu2O-CuO/ZSM-5, such as initial pH values, concentration of AO7 and catalyst dosage were investigated and optimized. The results showed that the sample had good catalytic activity for destruction of AO7 in the absence of a sacrificial agent (e.g. H2O2): it could degrade 91% AO7 in 140 min at 25 °C and was not restricted by the initial pH of the AO7 aqueous solutions. Cu2O-CuO/ZSM-5 exhibited stable catalytic activity with little loss after three successive runs. The total organic carbon and chemical oxygen demand removal efficiencies increased rapidly to 69.36% and 67.3% after 120 min of treatment by Cu2O-CuO/ZSM-5, respectively.


1998 ◽  
Vol 76 (11) ◽  
pp. 1707-1716 ◽  
Author(s):  
I Coulthard ◽  
S Degen ◽  
Y -J Zhu ◽  
T K Sham

Utilizing porous silicon as a reducing agent and a substrate, gold complex ions [AuCl4]- were reduced from aqueous solution to produce nanoparticles of gold upon the surface of porous silicon. Scanning electron microscopy (SEM) was utilized to study the morphology of the porous silicon layers and the deposits of gold nanoparticles. It is found that preparation conditions have a profound effect on the morphology of the deposits, especially on porous silicon prepared from a p-type wafer. The gold nanoparticles, varying from micrometric aggregates of clusters of the order of 10 nm, to a distribution of nearly spherical clusters of the order of 10 nm, to strings of ~10 nm were observed and compared to bulk gold metal using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). These techniques confirm and complement the SEM findings. The potential for this reductive deposition technique is noted.Key words: gold nanostructures, reductive deposition, porous silicon, morphology, X-ray spectroscopy.


2013 ◽  
Vol 16 (3) ◽  
pp. 141-145
Author(s):  
M.L. Hernandez-Pichardo ◽  
R. Gonzalez-Huerta ◽  
P. del Angel ◽  
E. Palacios-Gonzalez ◽  
M. Tufiño-Velazquez ◽  
...  

Platinum reduction on Pt/C catalysts was studied on samples prepared by the impregnation method using different Pt precursors and reducing agents such as ethanol, sodium borohydride and ethanol-UV light (photo-assisted reduction), in order to compare the efficiency of the different reducing agents. The influence of the reduction level of the platinum species on the electrochemical behavior of these catalysts has been determined. The catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and linear and cyclic voltammetry. The results show that the reduction level depends mainly on the platinum precursor. Moreover, it was found that the higher electrochemical activity was found using catalysts reduced with ethanol, whereas by using NaBH4 as the reducing agent, the total reduction of the platinum precursor is very difficult in same synthesis conditions. The analysis of the XPS results shows that samples reduced with ethanol presented the lower PtOx/Pt reduction ratio.


2012 ◽  
Vol 581-582 ◽  
pp. 313-316
Author(s):  
Xue Qiao Zhang ◽  
Zhi Xiang Ye ◽  
Cheng Hua Xu ◽  
Ming Zhao ◽  
Yao Qiang Chen

Barium oxide was introduced to modify Palladium catalysts supported on CeO2–ZrO2-La2O3-Al2O3 (CZLA) by impregnation and co-precipitation. methods. Various techniques, including X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS), were employed to characterize the physicochemical properties of BaO-modified Pd-only catalyst. Catalytic activity for methanol, CO, C3H8 and NO conversions showed that BaO-modified catalyst prepared by impregnation method exhibited the best performance for methanol, C3H8 and NO removals, while the catalyst prepared by co-precipitation method was in favor of CO oxidation. Combined with the results of XRD, H2-TPR and XPS, it is concluded that the co-existence of PdO and Pd-O-Ce active species by impregnation played an important role in the methanol, C3H8 and NO removals, while the higher dispersion of palladium and improved reducibility were mostly favorable to the CO oxidation. The conversion of NO was co-effected by tow active species and the formation of Ba2AlLaO5 mixed oxide.


Catalysts ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 291 ◽  
Author(s):  
Paula Brussino ◽  
Juan Bortolozzi ◽  
Oihane Sanz ◽  
Mario Montes ◽  
María Ulla ◽  
...  

This paper investigates the oxidative dehydrogenation of ethane to produce ethylene at low temperatures (500 °C) in metallic structured substrates. To check this point, the FeCrAlloy® monoliths with different channel sizes (289–2360 cpsi) were prepared. The monoliths were coated with a Ni/Al2O3 catalyst (by washcoating of alumina and the latter nickel impregnation) and characterized by Scanning Electron Microscopy and Energy-Dispersive X-ray analysis (SEM-EDX), Temperature-Programmed Reduction (TPR), X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). The catalytic results showed that all monoliths coated with ~300 mg of catalyst presented similar ethane conversion (15%) at 450 °C. However, the lowest selectivity to ethylene was found for the monolith with the lower channel size and the higher geometric surface area, where a heterogeneous catalyst layer with Ni enriched islands was generated. Therefore, it can be said that the selectivity to ethylene is linked to the distribution of Ni species on the support (alumina). Nevertheless, in all cases the selectivity was high (above 70%). On the other hand, the stability in reaction tests of one of the coated monoliths was done. This structured catalyst proved to be more stable under reaction conditions than the powder catalyst, with an initial slight drop in the first 8 h but after that, constant activity for the 152 h left.


2016 ◽  
Vol 99 ◽  
pp. 3-8
Author(s):  
Hsin Yu Lin ◽  
Yu Lin Ye

Developing a photocatalysis system to generate hydrogen from water is a topic of great interest for fundamental and practical importance. In this study, hydrogen production by a new Z-scheme photocatalysis water splitting system was examined over Rh modified K4Nb6O17 nanosheets and Pt/WO3 photocatalysts for H2 evolution and O2 evolution with I-/IO3- electron mediator under UV light irradiation. The H2 evolution photocatalyst, Rh/K4Nb6O17 nanosheets with a slit like framework, was prepared by exfoliation of and proton exchange reaction. Pt/WO3 prepared by incipient-wetness impregnation method was used as O2 evolution photocatalyst. The catalysts were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy analysis (XPS), and ultraviolet-visible spectroscopy (UV-vis). These catalysts characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectroscopy (UV-Vis). In this study, we developed a facile method of preparing K4Nb6O17 nanosheets containing Rh nanoparticles. Our results show that I- concentration and pH of reaction solution significantly influenced the photocatalytic activity. The combination of Rh modified K4Nb6O17 nanosheets with Pt/WO3 achieves a very high photoactivity (H2: 4240 O2: 1622 (μmol g-1 h-1)).


2021 ◽  
Author(s):  
Cheng Zhang ◽  
Jianhua Liu

Abstract Dielectric property, bulk density, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and mechanical properties were analyzed. PAN fibers (PFs) are polar materials, and the dielectric constant of KMnO4 modification fibers (Mn-PFs) is reduced. The bulk density of Mn-PFs under microwave stabilization (Mn-MSFs) is 0.04 g/cm3 higher than that of the microwave stabilized fibers (MSFs), shortening the value in one temperature zone. Compared with MSFs5, the stability of Mn-MSFs5 is improved by 10%, and the surface O content and O-containing functional groups are improved. The (002) crystal plane diffraction peak of Mn-MSFs5 is higher than that of MSFs5, and it has a higher stabilized structure. Moreover, after stabilization, the Mn element does not exist on the fiber surface and does not affect the structure of the stabilized fiber. The fineness of Mn-MSFs5 is 1.07 dtex, tensile strength is 1.52 cN/dtex, tensile modulus is 59.3 cN/dtex and elongation at break is 13.5%. It has excellent mechanical properties. In addition, a structural transformation of the thermal stabilization process is proposed, that is, the cyclization reaction first occurs, and then the dehydrogenation and oxidation reactions are performed.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 220 ◽  
Author(s):  
Ruliang Ning ◽  
Li Chen ◽  
Erwei Li ◽  
Xiaolong Liu ◽  
Tingyu Zhu

V2O5-WO3/TiO2 catalysts with different V2O5 and WO3 loadings were prepared by the impregnation method. H2O and SO2 resistance of the catalysts under high H2O concentration (30 vol.%) was studied. Influence of various basic metal oxides, such as Al2O3, CaO, Na2O, and K2O on the catalytic performance was studied and compared. It is revealed that the inhibitory effect is in the sequence of K > Na > Ca > Al, which is consistent with their alkalinity. X-ray diffraction (XRD), N2 physisorption (BET), temperature-programmed desorption of NH3 (NH3-TPD), H2-temperature programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were carried out, and the results were well-correlated with the catalytic studies.


1997 ◽  
Vol 468 ◽  
Author(s):  
Scott D. Wolter ◽  
Suzanne E. Mohney ◽  
Hari Venugopalan ◽  
Debra L. Waltemyer ◽  
Brian P. Luther

ABSTRACTLittle information is available about the thermal oxidation of GaN. Since GaN is of interest for high temperature electronics, knowledge of the stability of GaN in potentially oxidizing environments would be useful. Furthermore, evaluation of the characteristics of the thermal oxide will provide information needed for assessing the potential of this oxide in processing or device applications.In this study, thick GaN epilayers and GaN powders were exposed to dry air at 450°C, 750°C, 900°C, 925°C, 950°C, and 1000°C for periods of 1 to 25 hours. Following oxidation, the epilayers were analyzed by x-ray photoelectron spectroscopy and glancing incidence x-ray diffraction, and the powders were analyzed by conventional x-ray diffraction. For both the GaN films and powders, significant oxidation was observed at 900°C, and the oxide was identified as monoclinic β-Ga2O3. Oxidation in dry air resulted in roughening of the oxide/GaN interface and oxide surface. In the temperature range 900°C to 1000°C, linear kinetics were observed for times up to 10 hours indicating an interfacial reaction mechanism as the rate limiting step for oxidation. An apparent activation energy of ∼72 kcal/mole was determined for this process.


Sign in / Sign up

Export Citation Format

Share Document