In Situ Transformed Carbon Fibers/Al2O3 Nanocomposites Using Cao–MgO–SiO2 Sintering Agent

2021 ◽  
Vol 21 (10) ◽  
pp. 5235-5240
Author(s):  
Hua-Hui Chen ◽  
Jing-Jing Cao ◽  
Hai-Ping Hong ◽  
Nan Zheng ◽  
Jie Ren ◽  
...  

In Situ transformed carbon fibers/Al2O3 ceramic matrix nanocomposites with Cao–MgO–SiO2 sintering agent were prepared by hot-pressed sintering technology in vacuum. In the sintering process, pre-oxidized polyacrylonitrile fibers (below named as pre-oxidized PAN fibers) were used as the precursors of In Situ transformed carbon fibers. The micro/nanostructure of composites and interface between In Situ transformed carbon fibers and matrix were investigated, as well as the properties of composites. The results showed that the composites could be sintered well at a relatively low temperature of 1650 °C. During the sintering, the precursors, pre-oxidized PAN fibers, were In Situ transformed into carbon fibers, and the In Situ transformed carbon fibers had the graphitelike structure along the fiber axial direction. The carbon atoms arrangement in the surface layer of the fiber was more orderly than the core. A typical diffraction peak of carbon fiber at 26°, which corresponded to the (002) crystal plane, was observed, and the inter-planar spacing was approximately 0.34 nm. The CaO–MgO–SiO2 sintering agent formed MgAl2O4 and CaAl2Si2O8 phases in the interface between In Situ transformed carbon fibers and matrix, therefore improving the interface bonding, and thereby modifying the mechanical properties of the composites.

Author(s):  
Juan Alfredo Lino-Gamiño ◽  
Carlos Méndez-González ◽  
Eduardo José Salazar-Araujo ◽  
Pablo Adrián Magaña-Sánchez

In the value chain it is important to keep in mind the core business of the company, since it depends largely on the competitiveness of the company and its overall performance, bearing in mind that all business indicators depend on it. In this work we will study the washing process within the company WASH CONTAINERS SA DE CV, to improve the washing processes and in this way reduce times and movements in the process leading the company to reduce costs considerably within the operations company daily, having a more competitive operation and with greater profit margin in its business process. Goals: It Improve the logistics of the movement of containers for washing and with it the core business of the company. Methodology: The action research will be applied applying Business Process Management for the improvement of processes in situ, it will be developed in a certain period of time and with that it will establish an improvement projection. Contribution: The improvement of the times for the disposal of the containers and their subsequent use, allows a better competitiveness and with it the income of the company, on the other hand, the transport companies improve in performance in quantity, quality of disposition and with it their income.


2014 ◽  
Vol 1038 ◽  
pp. 75-81
Author(s):  
Bernd Niese ◽  
Philipp Amend ◽  
Uwe Urmoneit ◽  
Stephan Roth ◽  
Michael Schmidt

Embedding stereolithography (eSLA) is an additive, hybrid process, which provides a flexible production of 3D components and the ability to integrate electrical and optical conductive structures and functional components within parts. However, the embedding of conductive circuits in stereolithography (SLA) parts assumes usage of process technologies, which enables their direct integration of conductive circuits during the layer-wise building process. In this context, a promising method for in-situ generation of conductive circuits is dispensing of conductive adhesive on the current surface of the SLA part and its subsequent sintering. In this paper, the laser sintering (λ = 355 nm) of conductive adhesive mainly consisting of silver nanoparticles is investigated. The work intends to evaluate the curing behavior of the conductive adhesive, the beam-matter-interactions and the thermal damage of the SLA substrate. The investigations revealed a fast and flexible laser sintering process for the generation of conductive circuits with sufficient electrical conductivity and sufficient current capacity load. In this context, a characterization of the conductive structures is done by measuring their electrical resistance and their potential current capacity load.


2021 ◽  
Vol 199 ◽  
pp. 113820
Author(s):  
Thomas J. Cochell ◽  
Raymond R. Unocic ◽  
José Graña-Otero ◽  
Alexandre Martin

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Ghadami ◽  
E. Taheri-Nassaj ◽  
H. R. Baharvandi ◽  
F. Ghadami

AbstractHfB2, Si, and activated carbon powders were selected to fabricate 0–30 vol% SiC reinforced HfB2-based composite. Pressureless sintering process was performed at 2050 °C for 4 h under a vacuum atmosphere. Microstructural studies revealed that in situ SiC reinforcement was formed and distributed in the composite according to the following reaction: Si + C = SiC. A maximum relative density of 98% was measured for the 20 vol% SiC containing HfB2 composite. Mechanical investigations showed that the hardness and the fracture toughness of these composites were increased and reached up to 21.2 GPa for HfB2-30 vol% SiC and 4.9 MPa.m1/2 for HfB2-20 vol% SiC, respectively. Results showed that alpha-SiC reinforcements were created jagged, irregular, and elongated in shape which were in situ formed between HfB2 grains and filled the porosities. Formation of alpha-SiC contributed to improving the relative density and mechanical properties of the composite samples. By increasing SiC content, an enhanced trend of thermal conductivity was observed as well as a reduced trend for electrical conductivity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Edwards ◽  
Pierre Hélaouët ◽  
Eric Goberville ◽  
Alistair Lindley ◽  
Geraint A. Tarling ◽  
...  

AbstractIn the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 740
Author(s):  
Sang Gyun Shin ◽  
Wan Ho Kim ◽  
Dong Joon Min

The effects of Al2O3 content on the morphology and reducibility of sinter were respectively investigated using confocal laser microscopy and thermogravimetric analysis at 1273 K under CO gas. To understand the effects of the sintering process, separate samples were prepared via the equilibrium and metastable reaction routes. In the equilibrium samples, the addition of Al2O3 led to the formation of the silico-ferrite of calcium and alumino phase and a decrease in the reduction rate due to the lowered reactivity of iron oxide. In contrast, in the metastable samples, the reduction rate increased after the addition of 2.5 mass% Al2O3. The addition of Al2O3 decreased the fraction of the liquid phase and increased the fraction of pores in the sample. As a result, the reduction rate is proportional to the Al2O3 content owing to the changes in the sinter morphology. In determining the reduction rate of the sinter, the influence of the microstructure on the diffusion of the reducing gas is more significant than that of the interfacial chemical reaction due to the formation of the SFCA phase. The microstructure changes of the sinter with the addition of Al2O3 and the corresponding reduction behaviors are further discussed.


2005 ◽  
Vol 898 ◽  
Author(s):  
Devendra Verma ◽  
Rahul Bhowmik ◽  
Bedabibhas Mohanty ◽  
Dinesh R Katti ◽  
Kalpana S Katti

AbstractInterfaces play an important role in controlling the mechanical properties of composites. Optimum mechanical strength of scaffolds is of prime importance for bone tissue engineering. In the present work, molecular dynamics simulations and experimental studies have been conducted to study effect of interfacial interactions on mechanical properties of composites for bone replacement. In order to mimic biological processes, hydroxyapatite (HAP) is mineralized in presence of polyacrylic acid (PAAc) (in situ HAP). Further, solid and porous composites of in situ HAP with polycaprolactone (PCL) are made. Mechanical tests of composites of in situ HAP with PAAc have shown improved strain recovery, higher modulus/density ratio and also improved mechanical response in simulated body fluid (SBF). Simulation studies indicate potential for calcium bridging between –COO− of PAAc and surface calcium of HAP. This fact is also supported by infrared spectroscopic studies. PAAc modified surfaces of in situ HAP offer means to control the microstructure and mechanical response of porous composites. Nanoindentation experiments indicate that apatite grown on in situ HAP/PCL composites from SBF has improved elastic modulus and hardness. This work gives insight into the interfacial mechanisms responsible for mechanical response as well as bioactivity in biomaterials.


2021 ◽  
pp. 161638
Author(s):  
Ruoyu Chen ◽  
Xinxin Jin ◽  
Daqian Hei ◽  
Peng Lin ◽  
Feng Liu ◽  
...  

2017 ◽  
Vol 727 ◽  
pp. 327-334
Author(s):  
Yan Wang ◽  
Jun Wang ◽  
Xiao Fei Zhang ◽  
Ya Qing Liu

La-Nd co-doped barium hexaferrites, Ba0.7(LamNdn)0.3Fe12O19 (D-BaM), were successfully prepared by sol-gel method. PANI / D-BaM composites were synthesized by in-situ polymerization in solution. The structure, morphology and properties of samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), four-probe conductivity tester and vector network analyzer. The XRD patterns showed that the crystal structure of all the samples exist as M-type phases. The SEM images revealed that the particles presented a hexagonal platelet-like morphology. The magnetic properties could be improved by substitutions of La and Nd ions. The saturation magnetization (Ms) and coercive force (Hc) increased with the change of La / Nd ratio to the maximum at La / Nd = 3:1. The doped particles have also been embedded in conductive PANI to prepare electromagnetic materials, and the conductivity kept on the order of 10-2. The microwave absorbing properties of composites at 30 MHz-6 GHz improved obviously, the peak value of reflection loss could reach-7.5 dB.


Sign in / Sign up

Export Citation Format

Share Document