High Performance Broadband Ultraviolet A/Ultraviolet C Detector Based on Ga2O3/p-GaN Nanocomposite Film Fabricated by Magnetron Sputtering

2021 ◽  
Vol 21 (10) ◽  
pp. 5196-5200
Author(s):  
Shiyu Du ◽  
Naisen Yu ◽  
Haiyan Zhao ◽  
Yunfeng Wu ◽  
Li Wang

Ultraviolet (UV) detector based on β-Ga2O3/p-GaN was fabricated in this paper. The growth process involved deposition of amorphous Ga2O3 layer by means of magnetron sputtering and conversion of β-Ga2O3. The obtained detector displays excellent UV sensing properties which covers Ultraviolet A(UVA)/Ultraviolet C(UVC) region with fast response. It will provide a new route to fabricate β-Ga2O3/p-GaN heterostructure for applications in broadband ultraviolet sensing.

2020 ◽  
Vol 10 (5) ◽  
pp. 629-633
Author(s):  
Yong Wang ◽  
Naisen Yu

In this paper, visible-blind ultraviolet (UV) detectors based on a ZnS/p-GaN heterojunction structure were fabricated. The heterojunction structure was composed of a ZnS nanostructure deposited on a p-GaN/sapphire substrate. The ZnS nanostructured component was obtained via radio-frequency magnetron sputtering. The device based on this ZnS/p-GaN heterojunction structure showed a reproducible, stable, and fast response speed. Therefore, the results demonstrated that the ZnS/p-GaN heterojunction was successfully fabricated using this relatively low-cost method.


RSC Advances ◽  
2015 ◽  
Vol 5 (123) ◽  
pp. 101760-101767 ◽  
Author(s):  
Zhenyu Chu ◽  
Hongxin Sun ◽  
He Xu ◽  
Jiao Zhou ◽  
Guo Zhang ◽  
...  

The 3D porous α-Ni(OH)2/carbon black nanostructure composites were fabricated via a simple refluxing method using SDBS as the template. The composites exhibited excellent sensing properties with fast response and low detection limit of NO2 at room temperature.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1714 ◽  
Author(s):  
Weiping Liu ◽  
Ximing Zhang ◽  
Zhaofeng Wang ◽  
Ruijian Wang ◽  
Chen Chen ◽  
...  

Cd/In-glycerate spheres are synthesized through a simple solvothermal method. After thermal treatment, these Cd/In-glycerates can be converted into CdIn2O4 spheres. Many characterization methods were performed to reveal the microstructure and morphology of the CdIn2O4. It was found that pure CdIn2O4 phase was obtained for the Cd/In starting materials at ratios of 1:1.6. The CdIn2O4 spheres are composed by a large number of nanoparticles subunits. The CdIn2O4 sphere-based sensor exhibited a low detection limit (1 ppm), high response (81.20 to 500 ppm n-butanol), fast response (4 s) and recovery (10 s) time, good selectivity, excellent repeatability, and stability at 280 °C. Our findings highlight the possibility to develop a novel gas sensor based on CdIn2O4 for application in n-butanol detection with high performance.


Author(s):  
Raju Chandra ◽  
Manisha Pant ◽  
Harchan Singh ◽  
Deepak Kumar ◽  
Ashwani Sanghi

A reliable and reproducible reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the quantitative determination of Remipril drug content from marketed bulk tablets. The active ingredient of Remipril separation achieved with C18 column using the methanol water mobile phase in the ratio of 40:60 (v/v). The active ingredient of the drug content quantify with UV detector at 215 nm. The retention time of Remipril is 5.63 min. A good linearity relation (R2=0.999) was obtained between drug concentration and average peak areas. The limit of detection and limit of quantification of the instrument were calculated 0.03 and 0.09 µg/mL, respectively. The accuracy of the method validation was determined 102.72% by recoveries method.


2020 ◽  
Vol 16 (8) ◽  
pp. 1106-1112
Author(s):  
Ibrahim A. Darwish ◽  
Nasr Y. Khalil ◽  
Mohammad AlZeer

Background: Axitinib (AXT) is a member of the new generation of the kinase inhibitor indicated for the treatment of advanced renal cell carcinoma. Its therapeutic benefits depend on assuring the good-quality of its dosage forms in terms of content and stability of the pharmaceutically active ingredient. Objective: This study was devoted to the development of a simple, sensitive and accurate stabilityindicating high-performance liquid chromatographic method with ultraviolet detection (HPLC-UV) for the determination of AXT in its bulk and dosage forms. Methods: Waters HPLC system was used. The chromatographic separation of AXT, internal standard (olaparib), and degradation products were performed on the Nucleosil CN column (250 × 4.6 mm, 5 μm). The mobile phase consisted of water:acetonitrile:methanol (40:40:20, v/v/v) with a flow rate of 1 ml/min, and the UV detector was set at 225 nm. AXT was subjected to different accelerated stress conditions and the degradation products, when any, were completely resolved from the intact AXT. Results: The method was linear (r = 0.9998) in the concentration range of 5-50 μg/ml. The limits of detection and quantitation were 0.85 and 2.57 μg/ml, respectively. The accuracy of the method, measured as recovery, was in the range of 98.0-103.6% with relative standard deviations in the range of 0.06-3.43%. The results of stability testing revealed that AXT was mostly stable in neutral and oxidative conditions; however, it was unstable in alkaline and acidic conditions. The kinetics of degradation were studied, and the kinetic rate constants were determined. The proposed method was successfully applied for the determination of AXT in bulk drug and dosage forms. Conclusions: A stability-indicating HPLC-UV method was developed and validated for assessing AXT stability in its bulk and dosage forms. The method met the regulatory requirements of the International Conference on Harmonization (ICH) and the Food and Drug Administration (FDA). The results demonstrated that the method would have great value when applied in quality control and stability studies for AXT.


2018 ◽  
Vol 15 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Bürge Aşçı ◽  
Mesut Koç

Introduction:This paper presents the development and validation of a novel, fast, sensitive and accurate high performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical preparations.Experiment:Development of the chromatographic method was based on an experimental design approach. A five-level-three-factor central composite design requiring 20 experiments in this optimization study was performed in order to evaluate the effects of three independent variances including mobile phase ratio, flow rate and amount of acid in the mobile phase.Conclusion:The optimum composition for mobile phase was found as a methanol:water:acetic acid mixture at 71.6 : 26.4 : 2 (v/v/v) ratio and optimum separation was acquired by isocratic elution with a flow rate of 1.3 mL/min. The analytes were detected using a UV detector at 240 nm. The developed method was validated in terms of linearity, precision, accuracy, limit of detection/quantitation and solution stability and successfully applied to the determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical topical formulations such as suppositories and ointments.


2021 ◽  
pp. 107815522199120
Author(s):  
Mélanie Hinterlang ◽  
Amandine Gendron ◽  
Thomas Fleury ◽  
André Rieutord ◽  
Anastasia Vrana ◽  
...  

Background Imatinib is a protein-tyrosine kinase inhibitor which is currently only commercially available as a tablet dosage form in the strength of 100mg and 400mg. The elaboration of new oral liquid formulations is suitable in pediatrics and for patients who have difficulties to swallow, notably in the absence of commercial forms. This enables the adaptation of dosage and secure the administration. Objectives The formulation of an oral pediatric solution of imatinib at a concentration of 30 mg/mL and the evaluation of its stability for the treatment of pediatric patients with Philadelphia chromosome positive chronic myeloid leukemia. Methods The physicochemical stability parameters: appearance, pH, osmolality, and drug content of formulation were evaluated for 30 days when stored at 2–8°C. Concentration of solution was measured with a validated method using high performance liquid chromatography (HPLC) coupled with an absorbance UV detector. Equally, microbiological stability was performed. Results The remaining imatinib concentration was at least 95% of the initial concentration after 30 days stored in fridge temperature. No changes were observed regarding the physical properties of the formulation during the study period. Conclusions The stability study showed that the imatinib oral solution at a concentration of 30 mg/mL provides an alternative option at the commercial tablet dosage forms for pediatric patients and patients who have difficulties to swallow.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 874
Author(s):  
Soyoung Bae ◽  
Youngno Kim ◽  
Jeong Min Kim ◽  
Jung Hyun Kim

MXene, a 2D material, is used as a filler to manufacture polymer electrolytes with high ionic conductivity because of its unique sheet shape, large specific surface area and high aspect ratio. Because MXene has numerous -OH groups on its surface, it can cause dehydration and condensation reactions with poly(4-styrenesulfonic acid) (PSSA) and consequently create pathways for the conduction of cations. The movement of Grotthuss-type hydrogen ions along the cation-conduction pathway is promoted and a high ionic conductivity can be obtained. In addition, when electrolytes composed of a conventional acid or metal salt alone is applied to an electrochromic device (ECD), it does not bring out fast response time, high coloration efficiency and transmittance contrast simultaneously. Therefore, dual-cation electrolytes are designed for high-performance ECDs. Bis(trifluoromethylsulfonyl)amine lithium salt (LiTFSI) was used as a source of lithium ions and PSSA crosslinked with MXene was used as a source of protons. Dual-Cation electrolytes crosslinked with MXene was applied to an indium tin oxide-free, all-solution-processable ECD. The effect of applying the electrolyte to the device was verified in terms of response time, coloration efficiency and transmittance contrast. The ECD with a size of 5 × 5 cm2 showed a high transmittance contrast of 66.7%, fast response time (8 s/15 s) and high coloration efficiency of 340.6 cm2/C.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amol S. Jagdale ◽  
Nilesh S. Pendbhaje ◽  
Rupali V. Nirmal ◽  
Poonam M. Bachhav ◽  
Dayandeo B. Sumbre

Abstract Background A new, sensitive, suitable, clear, accurate, and robust reversed-phase high-performance liquid chromatography (RP-HPLC) method for the determination of brexpiprazole in bulk drug and tablet formulation was developed and validated in this research. Surface methodology was used to optimize the data, with a three-level Box-Behnken design. Methanol concentration in the mobile phase, flow rate, and pH were chosen as the three variables. The separation was performed using an HPLC method with a UV detector and Openlab EZchrom program, as well as a Water spherisorb C18 column (100 mm × 4.6; 5m). Acetonitrile was pumped at a flow rate of 1.0 mL/min with a 10 mM phosphate buffer balanced to a pH of 2.50.05 by diluted OPA (65:35% v/v) and detected at 216 nm. Result The developed RP-HPLC method yielded a suitable retention time for brexpiprazole of 4.22 min, which was optimized using the Design Expert-12 software. The linearity of the established method was verified with a correlation coefficient (r2) of 0.999 over the concentration range of 5.05–75.75 g/mL. For API and formulation, the percent assay was 99.46% and 100.91%, respectively. The percentage RSD for the method’s precision was found to be less than 2.0%. The percentage recoveries were discovered to be between 99.38 and 101.07%. 0.64 μg/mL and 1.95 μg/mL were found to be the LOD and LOQ, respectively. Conclusion The developed and validated RP-HPLC system takes less time and can be used in the industry for routine quality control/analysis of bulk drug and marketed brexpiprazole products. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document