Co3S4/NiCo2S4 Nano-Arrays on Nickel Foam as Energy Storage for Supercapacitors

2021 ◽  
Vol 16 (6) ◽  
pp. 891-904
Author(s):  
Xiang-Sen Meng ◽  
Jun Xiang ◽  
Nan Bu ◽  
Yan Guo ◽  
Sroeurb Loy ◽  
...  

In this work, Co3S4/NiCo2S4 nano-arrays electrode with Co3S4 nanocones and NiCo2S4 nanosheets interlaced arrangement are prepared by the promising hydrothermal method. Compared with single Co3S4/NF or NiCo2S4/NF electrode, the prepared Co3S4/NiCo2S4/NF electrode exhibits excellent specific capacitance. At a current density of 2 mA cm−2, the surface capacitance is as high as 9036 mF cm−2, and it still maintains a surface capacitance of 5664 mF cm−2 at a current density of 8 mA cm−2. Co3S4/NiCo2S4/NF||ASC has a high electrochemical performance with a maximum energy density of 0.62 Wh cm−3 and a power density of 15.94 W cm−3. At a current density of 5 mA cm−2, the capacity retention rate is 83.75% after 3000 cycles.

2021 ◽  
Vol 5 (5) ◽  
pp. 129
Author(s):  
Yapeng Wang ◽  
Yanxiang Wang ◽  
Chengjuan Wang ◽  
Yongbo Wang

As one of the most outstanding high-efficiency and environmentally friendly energy storage devices, the supercapacitor has received extensive attention across the world. As a member of transition metal oxides widely used in electrode materials, manganese dioxide (MnO2) has a huge development potential due to its excellent theoretical capacitance value and large electrochemical window. In this paper, MnO2 was prepared at different temperatures by a liquid phase precipitation method, and polyaniline/manganese dioxide (PANI/MnO2) composite materials were further prepared in a MnO2 suspension. MnO2 and PANI/MnO2 synthesized at a temperature of 40 °C exhibit the best electrochemical performance. The specific capacitance of the sample MnO2-40 is 254.9 F/g at a scanning speed of 5 mV/s and the specific capacitance is 241.6 F/g at a current density of 1 A/g. The specific capacitance value of the sample PANI/MnO2-40 is 323.7 F/g at a scanning speed of 5 mV/s, and the specific capacitance is 291.7 F/g at a current density of 1 A/g, and both of them are higher than the specific capacitance value of MnO2. This is because the δ-MnO2 synthesized at 40 °C has a layered structure, which has a large specific surface area and can accommodate enough electrolyte ions to participate the electrochemical reaction, thus providing sufficient specific capacitance.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2013 ◽  
Vol 291-294 ◽  
pp. 786-790
Author(s):  
Ling Bin Kong ◽  
Xiao Ming Li ◽  
Mao Cheng Liu ◽  
Xue Jing Ma ◽  
Yong Chun Luo ◽  
...  

Unique NiO and Co3O4 nanostructures were successfully deposited on nickel foam (NF) substrate by a hydrothermal process. Both of them are highly dispersed on the surface of NF, showing a unique nanoporous film structure. They exhibit excellent electrochemical performance due to their effective porous structure which introducing facile electrolyte penetration and fast proton exchange. The highest specific capacitance of 231 and 493 F g-1 are achieved for NiO and Co3O4 electrodes at a current density of 0.5 A g-1, respectively.


Author(s):  
Yihan Shi ◽  
Ming Zhang ◽  
Junshan Zhao ◽  
Liu Zhang ◽  
Xumei Cui ◽  
...  

Abstract In this work, MnO2&SDBS electrodes with nano-honeycomb morphology were prepared by ultrasound-assisted electrochemical deposition using sodium dodecylbenzene sulfonate (SDBS) as a surfactant agent. The effect and mechanism of SDBS on the morphology of MnO2 nanomaterials during the preparation of MnO2 by electrochemical anodic oxidation was systematically investigated by varying the content of SDBS in the precursor solution. When the SDBS concentration is 2 g\bulletL-1, the resulting electrode has the best electrochemical performance, and the specific capacitance is up to 407 F\bulletg-1 at the current density of 1000 mAg-1. To further enhance its performance, a carbon coating layer was deposited on the surface of the electrode using a method similar to chemical vapor deposition. Finally, the MnO2&SDBS@C electrode with a three-dimensional net-to-film composite structure with a high specific surface area, hierarchical structure and interconnect with nickel foam supports were obtained. The electrode has excellent electrochemical performance, and the specific capacitance is still up to 289 Fg-1 at a high current density of 5000 mAg-1. Furthermore, the specific capacitance of the electrode was maintained at 76.7% after 5000 cycles of charging and discharging at a current density of 2000 mAg−1.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7793
Author(s):  
Arjunan Ariharan ◽  
Sung-Kon Kim

Electrochemical energy storage (EES) systems are attracting research attention as an alternative to fossil fuels. Advances in the design and composition of energy storage materials are particularly significant. Biomass waste-derived porous carbons are particularly suitable for use in EES systems as they are capable of tuning pore networks from hierarchical porous structures with high specific surface areas. These materials are also more sustainable and environmentally friendly and less toxic and corrosive than other energy storage materials. In this study, we report the creation of a three-dimensional hierarchical porous carbon material derived from betelnut shells. The synthesized three-dimensional (3D) hierarchical porous carbon electrode showed a specific capacitance of 290 F g−1 using 1 M KOH as an electrolyte at a current density of 1 A g−1 in three-electrode systems. Moreover, it offered a high charge/discharge stability of 94% over 5000 charge–discharge cycles at a current density of 5 A g−1. Two-electrode symmetric systems show a specific capacitance of 148 F g−1, good cyclic stability of 90. 8% for 5000 charge-discharge cycles, and high energy density of 41 Wh Kg−1 at the power density of 483 W Kg−1 in aqueous electrolyte.


2019 ◽  
Vol 7 (3) ◽  
pp. 1273-1280 ◽  
Author(s):  
Ning Hu ◽  
Wen Hao Gong ◽  
Lei Huang ◽  
Pei Kang Shen

Unique hierarchical flower-like ZnO/Co3O4 nanobundle arrays were synthesized via a facile hydrothermal method and the electrode shows remarkable specific capacitance up to 1983 F g−1 at a current density of 2 A g−1.


NANO ◽  
2019 ◽  
Vol 14 (07) ◽  
pp. 1950085 ◽  
Author(s):  
Puhong Wen ◽  
Jingjing Guo ◽  
Lijun Ren ◽  
Chuanchuan Wang ◽  
Yuzhu Lan ◽  
...  

1D [Formula: see text]-MoO3 nanobelts were prepared using ammonium heptamolybdate tetrahydrate [(NH[Formula: see text]Mo7O[Formula: see text]H2O] as raw material by one-step hydrothermal method without template or guide agent at 180∘C. The layered [Formula: see text]-MoO3 nanobelt electrode has favorable electrochemical performance, and displays a fairly high specific capacitance, which can be up to 445[Formula: see text]F/g at a current density of 0.5[Formula: see text]A/g.


2014 ◽  
Vol 2 (30) ◽  
pp. 11776-11783 ◽  
Author(s):  
Hai Wang ◽  
Chen Qing ◽  
Junling Guo ◽  
A. A. Aref ◽  
Daming Sun ◽  
...  

Highly conductive carbon–CoO nanowire array electrodes on 3D nickel foam were designed with ultrahigh specific capacitance (3282.2 F g−1), approaching the CoO theoretical value. Assembled into an asymmetric supercapacitor, the energy density is ∼58.9 W h kg−1, a record among Co-based supercapacitors.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2176
Author(s):  
Deepa Guragain ◽  
Sunil Karna ◽  
Jonghyun Choi ◽  
Romakanta Bhattarai ◽  
Tej P. Poudel ◽  
...  

In this study, hydrothermally produced Fe-doped Co3O4 nanostructured particles are investigated as electrocatalysts for the water-splitting process and electrode materials for supercapacitor devices. The results of the experiments demonstrated that the surface area, specific capacitance, and electrochemical performance of Co3O4 are all influenced by Fe3+ content. The FexCo3-xO4 with x = 1 sample exhibits a higher BET surface (87.45 m2/g) than that of the pristine Co3O4 (59.4 m2/g). Electrochemical measurements of the electrode carried out in 3 M KOH reveal a high specific capacitance of 153 F/g at a current density of 1 A/g for x = 0.6 and 684 F/g at a 2 mV/s scan rate for x = 1.0 samples. In terms of electrocatalytic performance, the electrode (x = 1.0) displayed a low overpotential of 266 mV (at a current density of 10 mA/cm2) along with 52 mV/dec Tafel slopes in the oxygen evolution reaction. Additionally, the overpotential of 132 mV (at a current density of 10 mA/cm2) and 109 mV with 52 mV/dec Tafel slope were obtained for x = 0.6 sample towards hydrogen evolution reaction (HER). According to electrochemical impedance spectroscopy (EIS) measurements and the density functional theory (DFT) study, the addition of Fe3+ increased the conductivity at the electrode–electrolyte interface, which substantially impacted the high activity of the iron-doped cobalt oxide. The electrochemical results revealed that the mesoporous Fe-doped Co3O4 nanostructure could be used as potential electrode material in the high-performance electrochemical capacitor and water-splitting catalysts.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Guo-Qun Zhang ◽  
Bo Li ◽  
Mao-Cheng Liu ◽  
Shang-Ke Yuan ◽  
Leng-Yuan Niu

Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through a liquid phase process and a nanoparticles structure with high surface area is obtained. The highest specific capacitance of 286 F g−1 is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16 times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a high energy density (21.3 Wh kg−1) and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles). The study provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical conductivity.


Sign in / Sign up

Export Citation Format

Share Document