Application of nano-metric synthetic materials in medical imaging diagnosis

2021 ◽  
Vol 11 (7) ◽  
pp. 1168-1176
Author(s):  
Hang Yang

This paper investigates the application of nanometer synthetic materials in medical imaging diagnosis. The main synthesis methods of nanomaterials are described, and nanomaterials are applied to X-ray CT imaging, magnetic resonance imaging, PAT imaging, fluorescence imaging, photoacoustic imaging and PET imaging. The diagnostic results can be obtained by applying spatial filtering to filter operation, medical imaging and the filtering processing of image segmentation. By extracting the medical image texture feature using gray level cooccurrence matrix, studying shallow network features and combining the characteristics of the learning result, a more comprehensive medical imaging diagnosis can be obtained. The experimental results show that the method can reduce the error rate of medical imaging diagnosis and accelerate the efficiency of medical imaging diagnosis.

Author(s):  
SatyasangramSahoo Et. al.

Enhancement of cancerous images is a vital section of image preprocessing for Computed Tomography imaging classification. The combination of computer added pictures in X-ray is widely used for medical imaging. Basic enhancement techniques like Pixel wise Enhancements and Local operator based operation on computed Tomography (C.T.) scan are mainly used in preprocessing by using an artificially based model of the medical imaging. The study is focused on selecting the better among basic enhancement methods by using the cancerNet neural network structure. Whereas CancerNet is a widely used Convolutional neural Network structure for classification based study for cancerous medical image.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Ying Wu ◽  
Jikun Liu

AbstractWith the rapid development of gymnastics technology, novel movements are also emerging. Due to the emergence of various complicated new movements, higher requirements are put forward for college gymnastics teaching. Therefore, it is necessary to combine the multimedia simulation technology to construct the human body rigid model and combine the image texture features to display the simulation image in texture form. In the study, GeBOD morphological database modeling was used to provide the data needed for the modeling of the whole-body human body of the joint and used for dynamics simulation. Simultaneously, in order to analyze and summarize the technical essentials of the innovative action, this experiment compared and analyzed the hem stage of the cross-headstand movement of the subject and the hem stage of the 180° movement. Research shows that the method proposed in this paper has certain practical effects.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Michael Rutherford ◽  
Seong K. Mun ◽  
Betty Levine ◽  
William Bennett ◽  
Kirk Smith ◽  
...  

AbstractWe developed a DICOM dataset that can be used to evaluate the performance of de-identification algorithms. DICOM objects (a total of 1,693 CT, MRI, PET, and digital X-ray images) were selected from datasets published in the Cancer Imaging Archive (TCIA). Synthetic Protected Health Information (PHI) was generated and inserted into selected DICOM Attributes to mimic typical clinical imaging exams. The DICOM Standard and TCIA curation audit logs guided the insertion of synthetic PHI into standard and non-standard DICOM data elements. A TCIA curation team tested the utility of the evaluation dataset. With this publication, the evaluation dataset (containing synthetic PHI) and de-identified evaluation dataset (the result of TCIA curation) are released on TCIA in advance of a competition, sponsored by the National Cancer Institute (NCI), for algorithmic de-identification of medical image datasets. The competition will use a much larger evaluation dataset constructed in the same manner. This paper describes the creation of the evaluation datasets and guidelines for their use.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3876
Author(s):  
Jesús Valdés ◽  
Daniel Reséndiz ◽  
Ángeles Cuán ◽  
Rufino Nava ◽  
Bertha Aguilar ◽  
...  

The effect of microwave radiation on the hydrothermal synthesis of the double perovskite Sr2FeMoO6 has been studied based on a comparison of the particle size and structural characteristics of products from both methods. A temperature, pressure, and pH condition screening was performed, and the most representative results of these are herein presented and discussed. Radiation of microwaves in the hydrothermal synthesis method led to a decrease in crystallite size, which is an effect from the reaction temperature. The particle size ranged from 378 to 318 nm when pH was 4.5 and pressure was kept under 40 bars. According to X-ray diffraction (XRD) results coupled with the size-strain plot method, the product obtained by both synthesis methods (with and without microwave radiation) have similar crystal purity. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) techniques showed that the morphology and the distribution of metal ions are uniform. The Curie temperature obtained by thermogravimetric analysis indicates that, in the presence of microwaves, the value was higher with respect to traditional synthesis from 335 K to 342.5 K. Consequently, microwave radiation enhances the diffusion and nucleation process of ionic precursors during the synthesis, which promotes a uniform heating in the reaction mixture leading to a reduction in the particle size, but keeping good crystallinity of the double perovskite. Precursor phases and the final purity of the Sr2FeMoO6 powder can be controlled via hydrothermal microwave heating on the first stages of the Sol-Gel method.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 885
Author(s):  
Vasile Berinde ◽  
Cristina Ţicală

The aim of this paper is to show analytically and empirically how ant-based algorithms for medical image edge detection can be enhanced by using an admissible perturbation of demicontractive operators. We thus complement the results reported in a recent paper by the second author and her collaborators, where they used admissible perturbations of demicontractive mappings as test functions. To illustrate this fact, we first consider some typical properties of demicontractive mappings and of their admissible perturbations and then present some appropriate numerical tests to illustrate the improvement brought by the admissible perturbations of demicontractive mappings when they are taken as test functions in ant-based algorithms for medical image edge detection. The edge detection process reported in our study considers both symmetric (Head CT and Brain CT) and asymmetric (Hand X-ray) medical images. The performance of the algorithm was tested visually with various images and empirically with evaluation of parameters.


2021 ◽  
Vol 28 ◽  
Author(s):  
Mengkui Ding ◽  
Jinyao Liu ◽  
Junlei Yang ◽  
Hui Wang ◽  
Xianjin Xie ◽  
...  

: The complexity of tumor microenvironment and the diversity of tumors seriously affect the therapeutic effect, the focus, therefore, has gradually been shifted from monotherapy to combination therapy in clinical research in order to improve the curative effect. The synergistic enhancement interactions among multiple monotherapies majorly contribute to the birth of the multi-mode cooperative therapy, whose effect of the treatment is clearly stronger than that of any single therapy. In addition, the accurate diagnosis of the tumour location is also crucial to the treatment. Bismuth-based nanomaterials (NMs) hold great properties as promising theranostic platforms based on their many unique features that include low toxicity, excellent photothermal conversion efficiency as well as high ability of X-ray computed tomography imaging and photoacoustic imaging. In this review, we will introduce briefly the main features of tumor microenvironment first and its effect on the mechanism of nanomedicine actions and present the recent advances of bismuth-based NMs for diagnosis and photothermal therapy-based combined therapies using bismuth-based NMs are presented, which may provide a new way for overcoming drug resistance and hypoxia. At the end, further challenges and outlooks regarding this promising field are discussed accompanied with some design tips for bismuth-based NMs, hoping to provide researchers some inspirations to design safe and effective nanotherapeutic agents for the clinical treatments of cancers.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 702 ◽  
Author(s):  
Juan Matmin ◽  
Irwan Affendi ◽  
Salizatul Ibrahim ◽  
Salasiah Endud

Nanostructured hematite materials for advanced applications are conventionally prepared with the presence of additives, tainting its purity with remnants of copolymer surfactants, active chelating molecules, stabilizing agents, or co-precipitating salts. Thus, preparing nanostructured hematite via additive-free and green synthesis methods remains a huge hurdle. This study presents an environmentally friendly and facile synthesis of spherical nanostructured hematite (Sp-HNP) using rice starch-assisted synthesis. The physicochemical properties of the Sp-HNP were investigated by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DR UV-Vis), and nitrogen adsorption–desorption analysis. The Sp-HNP showed a well-crystallized structure of pure rhombohedral phase, having a spherical-shaped morphology from 24 to 48 nm, and a surface area of 20.04 m2/g. Moreover, the Sp-HNP exhibited enhanced photocatalytic degradation of methylene blue dye, owing to the large surface-to-volume ratio. The current work has provided a sustainable synthesis route to produce spherical nanostructured hematite without the use of any hazardous agents or toxic additives, in agreement with the principles of green chemistry for the degradation of dye contaminant.


Sign in / Sign up

Export Citation Format

Share Document