Precise Design of Micro-Cantilever Sensor for Biomedical Application

2020 ◽  
Vol 18 (12) ◽  
pp. 900-904
Author(s):  
Vinayak Pachkawade

This research evaluates the impact of mass loading/perturbations on the characteristics of a micro-size cantilever bio-mass sensor. Design techniques are proposed through the application of the commercial, finite element modelling, and simulation package, i.e., COMSOL multiphysics. A finite element model and resulting simulations are provided for both the static and dynamic operation of a bio-mass sensor. In static mode, the obtained result provides the structural stress, strain, and displacement of a sensor against several mass loading conditions (point, edge, and boundary). In dynamic mode, shifts in the resonant frequencies of the sensor as a function of mass loading are obtained, which is another viable output of the biosensor. The proposed design and modelling techniques offer a guide in the rapid design and development of precise and efficient biomedical instrumentations and/or products.

Author(s):  
Kevin Darques ◽  
Abdelmounaïm Tounzi ◽  
Yvonnick Le-menach ◽  
Karim Beddek

Purpose This paper aims to go deeper on the analysis of the shaft voltage of large turbogenerators. The main interest of this study is the investigation process developed. Design/methodology/approach The analysis of the shaft voltage because of several defects is based on a two-dimensional (2D) finite element modeling. This 2D finite element model is used to determine the shaft voltage because of eccentricities or rotor short-circuit. Findings Dynamic eccentricities and rotor short circuit do not have an inherent impact on the shaft voltage. Circulating currents in the stator winding because of defects impact the shaft voltage. Originality/value The original value of this paper is the investigation process developed. This study proposes to quantify the impact of a smooth stator and then to explore the contribution of the real stator winding on the shaft voltage.


Author(s):  
Ramakrishnan Maruthayappan ◽  
Hamid M. Lankarani

Abstract The behavior of structures under the impact or crash situations demands an efficient modeling of the system for its behavior to be predicted close to practical situations. The various formulations that are possible to model such systems are spring mass models, finite element models and plastic hinge models. Of these three techniques, the plastic hinge theory offers a more accurate model compared to the spring mass formulation and is much simpler than the finite element models. Therefore, it is desired to model the structure using plastic hinges and to use a computational program to predict the behavior of structures. In this paper, the behavior of some simple structures, ranging from an elementary cantilever beam to a torque box are predicted. It is also shown that the plastic hinge theory is a reliable method by comparing the results obtained from a plastic hinge model of an aviation seat structure with that obtained from a finite element model.


2014 ◽  
Vol 501-504 ◽  
pp. 578-582
Author(s):  
Liang Hsu ◽  
Ming Long Hu ◽  
Jun Zhi Zhang

Considering secondary load, simulate the axial compression process of reinforced concrete square columns strengthened with igneous rock fiber reinforced polymer with Abaqus. Make a comparison between the simulation result and experimental result. The finite-element model can simulate the experiment preferably. And the impact of lagged strain is very obvious.


2013 ◽  
Vol 579-580 ◽  
pp. 507-511
Author(s):  
Yi Xiang Liu ◽  
Yong Mei Wang

This paper firstly starting mechanism of vibration and noise from gear, gear noise mechanism is explained, and analyze the factors and the impact of noise on the gear reducer. Secondly, the establishment of a complete solid model of gear reducer and reducer model for finite element model, the reduction gear box gear reducer of modal analysis and finite element modal calculation, and points out the dynamic analysis of structure, size and weight factor is proportional to the reciprocal of the modal frequencies of each mode is the with the frequency is low, that is, the greater the weight. Once again, the main measure of load and control of gear noise of gear is analyzed, including the calculation, for exciting force reduction gear reducer gear load computation. The analysis and calculation are the theoretical basis of gear structure design and its performance evaluation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


10.29007/b1th ◽  
2022 ◽  
Author(s):  
Cong Hoa Vu ◽  
Ngoc Thien Ban Dang

Today, freight is an extremely important industry for the world we are living. Fast transportation, large volume...will optimize the cost, time and effort. Besides, ensuring the products safety is a matter of concern. During transporting, it is inevitable that the vibration caused by the engine, rough road surface...the cargo inside can be damaged. Automobile industries have prime importance to vibration testing. Sine vibration testing is performed when we have been given with only one frequency at given time instant. Trend to perform random vibration testing has been increased in recent times. As random vibration considers all excited frequencies in defined spectrum at known interval of time, it gives real-time data of vibration severities. The vibration severity is expressed in terms of Power Spectral Density (PSD). KLT box is an industrial stacking container conforming to the VDA 4500 standard that was defined by German Association of the Automotive Industry (VDA) for the automotive industry. The aim of this paper is study about random vibration and power spectral density analysis, how it can be used to predict the impact of hash road to the KLT box on container / truck during transportation. Finite element model is developed in ANSYS, modal analysis and random vibration analysis were done.


2014 ◽  
Vol 657 ◽  
pp. 735-739 ◽  
Author(s):  
Emilian Ionut Croitoru ◽  
Gheorghe Oancea

This paper presents a method of finite element modelling used for the impact analysis of a composite panel. In this research, the composite panel consists of an oxygen mask locking panel of an aircraft. This panel is loaded with one concentrated abuse loading and three uniform distributed abuse loading cases and the stress variation within the composite panel for each load case is determined. In order to assess the impact analysis on the oxygen mask panel of the aircraft, a finite element model is created using Patran as the main application for pre/post-processing and Nastran as the main processor. The paper also presents a comparison between results obtained using the same finite element modelling of the composite panel CAD model of the panel with four load cases with different material types. The results are used to determine the most capable material stresswise.


2018 ◽  
Vol 9 (4) ◽  
pp. 504-524 ◽  
Author(s):  
Gaurav Nilakantan

This work presents the first fully validated and predictive finite element modeling framework to generate the probabilistic penetration response of an aramid woven fabric subjected to ballistic impact. This response is defined by a V0-V100 curve that describes the probability of complete fabric penetration as a function of projectile impact velocity. The exemplar case considered in this article comprises a single-layer, fully clamped, plain-weave Kevlar fabric impacted at the center by a 0.22 cal spherical steel projectile. The fabric finite element model comprises individually modeled three-dimensional warp and fill yarns and is validated against the experimental material microstructure. Sources of statistical variability including yarn strength and modulus, inter-yarn friction, and precise projectile impact location are mapped into the finite element model. A series of impact simulations at varying projectile impact velocities is executed using LS-DYNA on the fabric models, each comprising unique mappings. The impact velocities and outcomes (penetration, non-penetration) are used to generate the numerical V0-V100 curve which is then validated against the experimental V0-V100 curve obtained from ballistic impact testing and shown to be in excellent agreement. The experimental data and its statistical analysis used for model input and validation, namely, the Kevlar yarn tensile strengths and moduli, inter-yarn friction, and fabric ballistic impact testing, are also reported.


2019 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Donato Perfetto ◽  
Giuseppe Lamanna ◽  
M. Manzo ◽  
A. Chiariello ◽  
F. di Caprio ◽  
...  

In the case of catastrophic events, such as an emergency landing, the fuselage structure is demanded to absorb most of the impact energy preserving, at the same time, a survivable space for the passengers. Moreover, the increasing trend of using composites in the aerospace field is pushing the investigation on the passive safety capabilities of such structures in order to get compliance with regulations and crashworthiness requirements. This paper deals with the development of a numerical model, based on the explicit finite element (FE) method, aimed to investigate the energy absorption capability of a full-scale 95% composite made fuselage section of a civil aircraft. A vertical drop test, performed at the Italian Aerospace Research Centre (CIRA), carried out from a height of 14 feet so to achieve a ground contact velocity of 30 feet/s in according to the FAR/CS 25, has been used to assess the prediction capabilities of the developed FE method, allowing verifying the response under dynamic load condition and the energy absorption capabilities of the designed structure. An established finite element model could be used to define the reliable crashworthiness design strategy to improve the survival chance of the passengers in events such as the investigated one.


2013 ◽  
Vol 433-435 ◽  
pp. 847-851
Author(s):  
Wei Miao Yan ◽  
Yun Bo Bi ◽  
Xin Tian Fan ◽  
Kun Peng Du ◽  
Wei Wang

This paper firstly establishes a finite element model of a fuselage panel, and then an assembly variation model is derived from the method of influence coefficients (MIC) and principal component analysis (PCA). With the calculation of Fisher information matrix and effective independence (EFI), 49 measurement points are extracted from a number of finite element nodes by the optimum selection method, and the mathematical relation between the position errors of measurement points and the positioning errors of frames is established, which is utilized to analyze the impact of positioning errors of each frame on fuselage panel assembly variation. Finally, the key frame that is important to ensure assembly accuracy and to improve the assembly process is determined.


Sign in / Sign up

Export Citation Format

Share Document