Sensitivity of an Ocean General Circulation Model to a Parameterization of Near-Surface Eddy Fluxes

2008 ◽  
Vol 21 (6) ◽  
pp. 1192-1208 ◽  
Author(s):  
Gokhan Danabasoglu ◽  
Raffaele Ferrari ◽  
James C. McWilliams

Abstract A simplified version of the near-boundary eddy flux parameterization developed recently by Ferrari et al. has been implemented in the NCAR Community Climate System Model (CCSM3) ocean component for the surface boundary only. This scheme includes the effects of diabatic mesoscale fluxes within the surface layer. The experiments with the new parameterization show significant improvements compared to a control integration that tapers the effects of the eddies as the surface is approached. Such surface tapering is typical of present implementations of eddy transport in some current ocean models. The comparison is also promising versus available observations and results from an eddy-resolving model. These improvements include the elimination of strong, near-surface, eddy-induced circulations and a better heat transport profile in the upper ocean. The experiments with the new scheme also show reduced abyssal cooling and diminished trends in the potential temperature drifts. Furthermore, the need for any ad hoc, near-surface taper functions is eliminated. The impact of the new parameterization is mostly associated with the modified eddy-induced velocity treatment near the surface. The new parameterization acts in the depth range exposed to enhanced turbulent mixing at the ocean surface. This depth range includes the actively turbulent boundary layer and a transition layer underneath, composed of waters intermittently exposed to mixing. The mixed layer, that is, the regions of weak stratification at the ocean surface, is found to be a good proxy for the sum of the boundary layer depth and transition layer thickness.

2017 ◽  
Vol 47 (12) ◽  
pp. 2863-2886 ◽  
Author(s):  
Qing Li ◽  
Baylor Fox-Kemper

AbstractLarge-eddy simulations (LESs) with various constant wind, wave, and surface destabilizing surface buoyancy flux forcing are conducted, with a focus on assessing the impact of Langmuir turbulence on the entrainment buoyancy flux at the base of the ocean surface boundary layer. An estimate of the entrainment buoyancy flux scaling is made to best fit the LES results. The presence of Stokes drift forcing and the resulting Langmuir turbulence enhances the entrainment rate significantly under weak surface destabilizing buoyancy flux conditions, that is, weakly convective turbulence. In contrast, Langmuir turbulence effects are moderate when convective turbulence is dominant and appear to be additive rather than multiplicative to the convection-induced mixing. The parameterized unresolved velocity scale in the K-profile parameterization (KPP) is modified to adhere to the new scaling law of the entrainment buoyancy flux and account for the effects of Langmuir turbulence. This modification is targeted on common situations in a climate model where either Langmuir turbulence or convection is important and may overestimate the entrainment when both are weak. Nevertheless, the modified KPP is tested in a global climate model and generally outperforms those tested in previous studies. Improvements in the simulated mixed layer depth are found, especially in the Southern Ocean in austral summer.


2011 ◽  
Vol 139 (12) ◽  
pp. 3781-3797 ◽  
Author(s):  
J.-W. Bao ◽  
C. W. Fairall ◽  
S. A. Michelson ◽  
L. Bianco

Abstract This paper focuses on parameterizing the effect of sea spray at hurricane-strength winds on the momentum and heat fluxes in weather prediction models using the Monin–Obukhov similarity theory (a common framework for the parameterizations of air–sea fluxes). In this scheme, the mass-density effect of sea spray is considered as an additional modification to the stratification of the near-surface profiles of wind, temperature, and moisture in the marine surface boundary layer (MSBL). The overall impact of sea-spray droplets on the mean profiles of wind, temperature, and moisture depends on the wind speed at the level of sea-spray generation. As the wind speed increases, the mean droplet size and the mass flux of sea-spray increase, rendering an increase of stability in the MSBL and the leveling-off of the surface drag. Sea spray also tends to increase the total air–sea sensible and latent heat fluxes at high winds. Results from sensitivity testing of the scheme in a numerical weather prediction model for an idealized case of hurricane intensification are presented along with a dynamical interpretation of the impact of the parameterized sea-spray physics on the structure of the hurricane boundary layer.


2014 ◽  
Vol 14 (19) ◽  
pp. 27425-27458 ◽  
Author(s):  
F. Hourdin ◽  
M. Gueye ◽  
B. Diallo ◽  
J.-L. Dufresne ◽  
L. Menut ◽  
...  

Abstract. We investigate the impact of the representation of the boundary layer transport in a climate model on the representation of the near surface wind and dust emission, with a focus on the Sahel/Sahara region. We show that the combination of vertical turbulent diffusion with a representation of the thermal cells of the convective boundary layer by a mass flux scheme leads to a more realistic representation of the diurnal cycle of wind in spring, with a maximum near surface wind in the morning. This maximum occurs when the thermal plumes reach the low level jet that forms during the night at a few hundred meters above surface. The horizontal momentum in the jet is transported downward to the surface by compensating subsidences around thermal plumes in typically less than one hour. This leads to a rapid increase of wind speed at surface and therefore of dust emissions owing to the strong non linearity of emission laws. The numerical experiments are performed with a zoomed and nudged configuration of the LMDZ general circulation model, coupled to the emission module of the CHIMERE Chemistry Transport Model, in which winds are relaxed toward that of the ERAI reanalyzes. The new set of parameterizations leads to a strong improvement of the representation of the diurnal cycle of wind when compared to a previous version of LMDZ as well as to the reanalyzes used for nudging themselves. It also reinforces dust emissions in better agreement with observations, but the aerosol optical thickness is still significantly underestimated.


2019 ◽  
Vol 49 (2) ◽  
pp. 409-429 ◽  
Author(s):  
Tobias Kukulka ◽  
Fabrice Veron

AbstractTurbulent processes in the ocean surface boundary layer (OSBL) play a key role in weather and climate systems. This study explores a Lagrangian analysis of wave-driven OSBL turbulence, based on a large-eddy simulation (LES) model coupled to a Lagrangian stochastic model (LSM). Langmuir turbulence (LT) is captured by Craik–Leibovich wave forcing that generates LT through the Craik–Leibovich type 2 (CL2) mechanism. Breaking wave (BW) effects are modeled by a surface turbulent kinetic energy flux that is constrained by wind energy input to surface waves. Unresolved LES subgrid-scale (SGS) motions are simulated with the LSM to be energetically consistent with the SGS model of the LES. With LT, Lagrangian autocorrelations of velocities reveal three distinct turbulent time scales: an integral, a dispersive mixing, and a coherent structure time. Coherent structures due to LT result in relatively narrow peaks of Lagrangian frequency velocity spectra. With and without waves, the high-frequency spectral tail is consistent with expectations for the inertial subrange, but BWs substantially increase spectral levels at high frequencies. Consistently, over short times, particle-pair dispersion results agree with the Richardson–Obukhov law, and near-surface dispersion is significantly enhanced because of BWs. Over longer times, our dispersion results are consistent with Taylor dispersion. In this case, turbulent diffusivities are substantially larger with LT in the crosswind direction, but reduced in the along-wind direction because of enhanced turbulent transport by LT that reduces mean Eulerian shear. Our results indicate that the Lagrangian analysis framework is effective and physically intuitive to characterize OSBL turbulence.


1998 ◽  
Vol 37 (3) ◽  
pp. 308-324 ◽  
Author(s):  
Stephen P. Palm ◽  
Denise Hagan ◽  
Geary Schwemmer ◽  
S. H. Melfi

Abstract A new technique for retrieving near-surface moisture and profiles of mixing ratio and potential temperature through the depth of the marine atmospheric boundary layer (MABL) using airborne lidar and multichannel infrared radiometer data is presented. Data gathered during an extended field campaign over the Atlantic Ocean in support of the Lidar In-space Technology Experiment are used to generate 16 moisture and temperature retrievals that are then compared with dropsonde measurements. The technique utilizes lidar-derived statistics on the height of cumulus clouds that frequently cap the MABL to estimate the lifting condensation level. Combining this information with radiometer-derived sea surface temperature measurements, an estimate of the near-surface moisture can be obtained to an accuracy of about 0.8 g kg−1. Lidar-derived statistics on convective plume height and coverage within the MABL are then used to infer the profiles of potential temperature and moisture with a vertical resolution of 20 m. The rms accuracy of derived MABL average moisture and potential temperature is better than 1 g kg−1 and 1°C, respectively. The method relies on the presence of a cumulus-capped MABL, and it was found that the conditions necessary for use of the technique occurred roughly 75% of the time. The synergy of simple aerosol backscatter lidar and infrared radiometer data also shows promise for the retrieval of MABL moisture and temperature from space.


2012 ◽  
Vol 39 (18) ◽  
Author(s):  
Stephen E. Belcher ◽  
Alan L. M. Grant ◽  
Kirsty E. Hanley ◽  
Baylor Fox-Kemper ◽  
Luke Van Roekel ◽  
...  

2008 ◽  
Vol 21 (12) ◽  
pp. 2770-2789 ◽  
Author(s):  
Raffaele Ferrari ◽  
James C. McWilliams ◽  
Vittorio M. Canuto ◽  
Mikhail Dubovikov

Abstract In the stably stratified interior of the ocean, mesoscale eddies transport materials by quasi-adiabatic isopycnal stirring. Resolving or parameterizing these effects is important for modeling the oceanic general circulation and climate. Near the bottom and near the surface, however, microscale boundary layer turbulence overcomes the adiabatic, isopycnal constraints for the mesoscale transport. In this paper a formalism is presented for representing this transition from adiabatic, isopycnally oriented mesoscale fluxes in the interior to the diabatic, along-boundary mesoscale fluxes near the boundaries. A simple parameterization form is proposed that illustrates its consequences in an idealized flow. The transition is not confined to the turbulent boundary layers, but extends into the partially diabatic transition layers on their interiorward edge. A transition layer occurs because of the mesoscale variability in the boundary layer and the associated mesoscale–microscale dynamical coupling.


2021 ◽  
Author(s):  
Gregory Wagner ◽  
Andre Souza ◽  
Adeline Hillier ◽  
Ali Ramadhan ◽  
Raffaele Ferrari

<p>Parameterizations of turbulent mixing in the ocean surface boundary layer (OSBL) are key Earth System Model (ESM) components that modulate the communication of heat and carbon between the atmosphere and ocean interior. OSBL turbulence parameterizations are formulated in terms of unknown free parameters estimated from observational or synthetic data. In this work we describe the development and use of a synthetic dataset called the “LESbrary” generated by a large number of idealized, high-fidelity, limited-area large eddy simulations (LES) of OSBL turbulent mixing. We describe how the LESbrary design leverages a detailed understanding of OSBL conditions derived from observations and large scale models to span the range of realistically diverse physical scenarios. The result is a diverse library of well-characterized “synthetic observations” that can be readily assimilated for the calibration of realistic OSBL parameterizations in isolation from other ESM model components. We apply LESbrary data to calibrate free parameters, develop prior estimates of parameter uncertainty, and evaluate model errors in two OSBL parameterizations for use in predictive ESMs.</p>


2017 ◽  
Author(s):  
Zilin Wang ◽  
Xin Huang ◽  
Aijun Ding

Abstract. Black carbon (BC) has been identified to play a critical role in aerosol-planet boundary layer (PBL) interaction and further deterioration of near-surface air pollution in megacities, which has been named as its dome effect. However, the impacts of key factors that influence this effect, such as the vertical distribution and aging processes of BC, and also the underlying land surface, have not been quantitatively explored yet. Here, based on available in-situ measurements of meteorology and atmospheric aerosols together with the meteorology-chemistry online coupled model, WRF-Chem, we conduct a set of parallel simulations to quantify the roles of these factors in influencing the BC's dome effect and surface haze pollution, and discuss the main implications of the results to air pollution mitigation in China. We found that the impact of BC on PBL is very sensitive to the altitude of aerosol layer. The upper level BC, especially those near the capping inversion, is more essential in suppressing the PBL height and weakening the turbulence mixing. The dome effect of BC tends to be significantly intensified as BC aerosol mixed with scattering aerosols during winter haze events, resulting in a decrease of PBL height by more than 25 %. In addition, the dome effect is more substantial (up to 15 %) in rural areas than that in the urban areas with the same BC loading, indicating an unexpected regional impact of such kind of effect to air quality in countryside. This study suggests that China's regional air pollution would greatly benefit from BC emission reductions, especially those from the elevated sources from the chimneys and also the domestic combustions in rural areas, through weakening the aerosol-boundary layer interactions that triggered by BC.


Sign in / Sign up

Export Citation Format

Share Document