scholarly journals Do CGCMs Simulate the North American Monsoon Precipitation Seasonal–Interannual Variability?

2008 ◽  
Vol 21 (17) ◽  
pp. 4424-4448 ◽  
Author(s):  
Xin-Zhong Liang ◽  
Jinhong Zhu ◽  
Kenneth E. Kunkel ◽  
Mingfang Ting ◽  
Julian X. L. Wang

Abstract This study uses the most recent simulations from all available fully coupled atmosphere–ocean general circulation models (CGCMs) to investigate whether the North American monsoon (NAM) precipitation seasonal–interannual variations are simulated and, if so, whether the key underlying physical mechanisms are correctly represented. This is facilitated by first identifying key centers where observed large-scale circulation fields and sea surface temperatures (SSTs) are significantly correlated with the NAM precipitation averages over the core region (central–northwest Mexico) and then examining if the modeled and observed patterns agree. Two new findings result from the analysis of observed NAM interannual variations. First, precipitation exhibits significantly high positive (negative) correlations with 200-hPa meridional wind centered to the northwest (southeast) of the core region in June and September (July and August). As such, wet conditions are associated with strong anomalous southerly upper-level flow on the northwest flank during the monsoon onset and retreat, but with anomalous northerly flow on the southeast flank, during the peak of the monsoon. They are often identified with a cyclonic circulation anomaly pattern over the central Great Plains for the July–August peak monsoon and, reversely, an anticyclonic anomaly pattern centered over the northern (southern) Great Plains for the June (September) transition. Second, wet NAM conditions in June and July are also connected with a SST pattern of positive anomalies in the eastern Pacific and negative anomalies in the Gulf of Mexico, acting to reduce the climatological mean gradient between the two oceans. This pattern suggests a possible surface gradient forcing that favors a westward extension of the North Atlantic subtropical ridge. These two observed features connected to the NAM serve as the metric for quantitative evaluation of the model performance in simulating the important NAM precipitation mechanisms. Out of 17 CGCMs, only the Meteorological Research Institute (MRI) model with a medium resolution consistently captures the observed NAM precipitation annual cycle (having a realistic amplitude and no phase shift) as well as interannual covariations with the planetary circulation patterns (having the correct sign and comparably high magnitude of correlation) throughout the summer. For the metric of correlations with 200-hPa meridional wind, there is general agreement among all CGCMs with observations for June and September. This may indicate that large-scale forcings dominate interannual variability for the monsoon onset and retreat, while variability of the peak of the monsoon in July and August may be largely influenced by local processes that are more challenging for CGCMs to resolve. For the metric of correlations with SSTs, good agreement is found only in June. These results suggest that the NAM precipitation interannual variability may likely be determined by large-scale circulation anomalies, while its predictability based on remote signals such as SSTs may not be sufficiently robust to be well captured by current CGCMs, with the exception of the June monsoon onset which is potentially more predictable.

2012 ◽  
Vol 25 (11) ◽  
pp. 3953-3969 ◽  
Author(s):  
Cuauhtémoc Turrent ◽  
Tereza Cavazos

In this study the results of two regional fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) simulations forced at their boundaries with low-pass-filtered North American Regional Reanalysis (NARR) composite fields from which synoptic-scale variability was removed are presented. The filtered NARR data are also assimilated into the inner domain through the use of field nudging. The purpose of this research is to investigate wet and dry onset modes in the core region of the North American monsoon (NAM). Key features of the NAM that are present in the NARR fields and assimilated into the regional simulations include the position of the midlevel anticyclone, low-level circulation over the Gulf of California, and moisture flux patterns into the core monsoon region, for which the eastern Pacific is the likely primary source of moisture. The model develops a robust diurnal cycle of deep convection over the peaks of the Sierra Madre Occidental (SMO) that results solely from its radiation scheme and internal dynamics, in spite of the field nudging. The wet onset mode is related to a regional land–sea thermal contrast (LSTC) that is ~2°C higher than in the dry mode, and is further characterized by a northward-displaced midlevel anticyclone, a stronger surface pressure gradient along the Gulf of California, larger mean moisture fluxes into the core region from the eastern Pacific, a stronger diurnal cycle of deep convection, and the more northward distribution of precipitation along the axis of the SMO. A proposed regional LSTC mechanism for NAM onset interannual variability is consistent with the differences between both onset modes.


2017 ◽  
Vol 30 (9) ◽  
pp. 3279-3296 ◽  
Author(s):  
Xiaoming Sun ◽  
Kerry H. Cook ◽  
Edward K. Vizy

ERA-Interim and JRA-55 reanalysis products are analyzed to document the annual cycle of the South Atlantic subtropical high (SASH) and examine how its interannual variability relates to regional and large-scale climate variability. The annual cycle of the SASH is found to have two peaks in both intensity and size. The SASH is strongest and largest during the solstitial months when its center is either closest to the equator and on the western side of the South Atlantic basin during austral winter or farthest poleward and in the center of the basin in late austral summer. Although interannual variations in the SASH’s position are larger in the zonal direction, the intensity of the high decreases when it is positioned to the north. This relationship is statistically significant in every month. Seasonal composites and EOF analysis indicate that meridional changes in the position of the SASH dominate interannual variations in austral summer. In particular, the anticyclone tends to be displaced poleward in La Niña years when the southern annular mode (SAM) is in its positive phase and vice versa. Wave activity flux vectors suggest that ENSO-related convective anomalies located in the central-eastern tropical Pacific act as a remote forcing for the meridional variability of the summertime SASH. In southern winter, multiple processes operate in concert to induce interannual variability, and none of them appears to dominate like ENSO does during the summer.


2004 ◽  
Vol 17 (20) ◽  
pp. 3892-3906 ◽  
Author(s):  
J. Xu ◽  
X. Gao ◽  
J. Shuttleworth ◽  
S. Sorooshian ◽  
E. Small

Geology ◽  
2020 ◽  
Vol 48 (3) ◽  
pp. 273-277 ◽  
Author(s):  
Majie Fan ◽  
Ran Feng ◽  
John W. Geissman ◽  
Christopher J. Poulsen

Abstract The relative roles of tectonics and global climate in forming the hydroclimate for widespread eolian deposition remain controversial. Oligocene loess has been previously documented in the interior of western United States, but its spatiotemporal pattern and causes remain undetermined. Through new stratigraphic record documentation and data compilation, we reveal the time transgressive occurrence of loess beginning in the latest Eocene in the central Rocky Mountains, that expands eastward to the Great Plains across the Eocene-Oligocene transition (EOT). Our climate simulations show that moderate uplift of the southern North America Cordillera initiated drying in the Cordilleran hinterland and immediate foreland, forming a potential dust source and sink, and global cooling at the EOT expanded the drying and eolian deposition eastward by causing retreat of the North American Monsoon. Therefore, the eolian deposition reflects continental aridification induced both by regional tectonism and global climate change during the late Paleogene.


2020 ◽  
Author(s):  
Küchelbacher Lisa ◽  
Laux Dominik ◽  
Michael Bittner

<p>Planetary waves (PW) dominate the meridional Brewer-Dobson circulation in the stratosphere and therewith, the large-scale mass transport of ozone. As PW break, ozone poor air masses are irreversibly mixed into mid-latitudes. Due to the disproportionate warming of the North Pole, an increase in PW activity (PWA) is expected. This should also have consequences for ozone streamer events.</p><p>We derived the PWA of ERA 5 and Interim Reanalysis temperature from ground level up the mesosphere. We identify Ozone-streamer events with a statistical based approach on the basis of total column concentration measured by GOME-2. We deconvoluted the time series of the PWA and the ozone-streamer events with the empirical mode decomposition method (EMD). Moreover, we developed a simple spectral model of the meridional wind shear on the basis of PW. This model serves as a measure of the atmospheric instability in the stratosphere.</p><p>As we deconvolute the PWA with the EMD we find signatures of QBO, ENSO and solar cycles and quantify their contributions. As PW dominate the circulation in the stratosphere, it appears to be a coherent consequence that ozone streamers are modulated on the same time scales as the PWA.With the spectral model of the meridional wind shear we find regions in the atmosphere, where PW are most likely to break. As a result there is an increased meridional transport of air masses, in particular of ozone. This is why ozone streamers occur most frequently at the transition zones from ocean to continent; strongest from North Atlantic to Europe. Moreover, we find significant long-term trends of the PWA in the stratosphere. Due to the increase of the PWA in the stratosphere, ozone streamer events are likely to occur more often in the future.</p>


2009 ◽  
Vol 22 (24) ◽  
pp. 6716-6740 ◽  
Author(s):  
D. S. Gutzler ◽  
L. N. Long ◽  
J. Schemm ◽  
S. Baidya Roy ◽  
M. Bosilovich ◽  
...  

Abstract The second phase of the North American Monsoon Experiment (NAME) Model Assessment Project (NAMAP2) was carried out to provide a coordinated set of simulations from global and regional models of the 2004 warm season across the North American monsoon domain. This project follows an earlier assessment, called NAMAP, that preceded the 2004 field season of the North American Monsoon Experiment. Six global and four regional models are all forced with prescribed, time-varying ocean surface temperatures. Metrics for model simulation of warm season precipitation processes developed in NAMAP are examined that pertain to the seasonal progression and diurnal cycle of precipitation, monsoon onset, surface turbulent fluxes, and simulation of the low-level jet circulation over the Gulf of California. Assessment of the metrics is shown to be limited by continuing uncertainties in spatially averaged observations, demonstrating that modeling and observational analysis capabilities need to be developed concurrently. Simulations of the core subregion (CORE) of monsoonal precipitation in global models have improved since NAMAP, despite the lack of a proper low-level jet circulation in these simulations. Some regional models run at higher resolution still exhibit the tendency observed in NAMAP to overestimate precipitation in the CORE subregion; this is shown to involve both convective and resolved components of the total precipitation. The variability of precipitation in the Arizona/New Mexico (AZNM) subregion is simulated much better by the regional models compared with the global models, illustrating the importance of transient circulation anomalies (prescribed as lateral boundary conditions) for simulating precipitation in the northern part of the monsoon domain. This suggests that seasonal predictability derivable from lower boundary conditions may be limited in the AZNM subregion.


2009 ◽  
Vol 22 (5) ◽  
pp. 1313-1324 ◽  
Author(s):  
Romain Marteau ◽  
Vincent Moron ◽  
Nathalie Philippon

Abstract The spatial coherence of boreal monsoon onset over the western and central Sahel (Senegal, Mali, Burkina Faso) is studied through the analysis of daily rainfall data for 103 stations from 1950 to 2000. Onset date is defined using a local agronomic definition, that is, the first wet day (>1 mm) of 1 or 2 consecutive days receiving at least 20 mm without a 7-day dry spell receiving less than 5 mm in the following 20 days. Changing either the length or the amplitude of the initial wet spell, or both, or the length of the following dry spell modifies the long-term mean of local-scale onset date but has only a weak impact either on its interannual variability or its spatial coherence. Onset date exhibits a seasonal progression from southern Burkina Faso (mid-May) to northwestern Senegal and Saharian edges (early August). Interannual variability of the local-scale onset date does not seem to be strongly spatially coherent. The amount of common or covariant signal across the stations is far weaker than the interstation noise at the interannual time scale. In particular, a systematic spatially consistent advance or delay of the onset is hardly observed across the whole western and central Sahel. In consequence, the seasonal predictability of local-scale onset over the western and central Sahel associated, for example, with large-scale sea surface temperatures, is, at best, weak.


2011 ◽  
Vol 24 (2) ◽  
pp. 575-582 ◽  
Author(s):  
Scott J. Weaver ◽  
Sumant Nigam

Abstract The evolution of supersynoptic (i.e., pentad) Great Plains low-level jet (GPLLJ) variability, its precipitation impacts, and large-scale circulation context are analyzed in the North American Regional Reanalysis (NARR)—a high-resolution precipitation-assimilating dataset—and the NCEP–NCAR reanalysis. The analysis strategy leans on the extended EOF technique, which targets both spatial and temporal recurrence of a variability episode. Pentad GPLLJ variability structures are found to be spatially similar to those in the monthly analysis. The temporal evolution of the supersynoptic GPLLJ-induced precipitation anomalies reveal interesting lead and lag relationships highlighted by GPLLJ variability-leading precipitation anomalies. Interestingly, similar temporal phasing of the GPLLJ and precipitation anomalies were operative during the 1993 (1988) floods (drought) over the Great Plains, indicating the importance of these submonthly GPLLJ variability modes in the instigation of extreme hydroclimatic episodes. The northward-shifted (dry) GPLLJ variability mode is linked to large-scale circulation variations emanating from remote regions that are modified by interaction with the Rocky Mountains, suggesting that the supersynoptic GPLLJ fluctuations may have their origin in orographic modulation of baroclinic development.


2013 ◽  
Vol 26 (22) ◽  
pp. 8787-8801 ◽  
Author(s):  
Kerrie L. Geil ◽  
Yolande L. Serra ◽  
Xubin Zeng

Abstract Precipitation, geopotential height, and wind fields from 21 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are examined to determine how well this generation of general circulation models represents the North American monsoon system (NAMS). Results show no improvement since CMIP3 in the magnitude (root-mean-square error and bias) of the mean annual cycle of monthly precipitation over a core monsoon domain, but improvement in the phasing of the seasonal cycle in precipitation is notable. Monsoon onset is early for most models but is clearly visible in daily climatological precipitation, whereas monsoon retreat is highly variable and unclear in daily climatological precipitation. Models that best capture large-scale circulation patterns at a low level usually have realistic representations of the NAMS, but even the best models poorly represent monsoon retreat. Difficulty in reproducing monsoon retreat results from an inaccurate representation of gradients in low-level geopotential height across the larger region, which causes an unrealistic flux of low-level moisture from the tropics into the NAMS region that extends well into the postmonsoon season. Composites of the models with the best and worst representations of the NAMS indicate that adequate representation of the monsoon during the early to midseason can be achieved even with a large-scale circulation pattern bias, as long as the bias is spatially consistent over the larger region influencing monsoon development; in other words, as with monsoon retreat, it is the inaccuracy of the spatial gradients in geopotential height across the larger region that prevents some models from realistic representation of the early and midseason monsoon system.


Sign in / Sign up

Export Citation Format

Share Document