scholarly journals The South Atlantic Subtropical High: Climatology and Interannual Variability

2017 ◽  
Vol 30 (9) ◽  
pp. 3279-3296 ◽  
Author(s):  
Xiaoming Sun ◽  
Kerry H. Cook ◽  
Edward K. Vizy

ERA-Interim and JRA-55 reanalysis products are analyzed to document the annual cycle of the South Atlantic subtropical high (SASH) and examine how its interannual variability relates to regional and large-scale climate variability. The annual cycle of the SASH is found to have two peaks in both intensity and size. The SASH is strongest and largest during the solstitial months when its center is either closest to the equator and on the western side of the South Atlantic basin during austral winter or farthest poleward and in the center of the basin in late austral summer. Although interannual variations in the SASH’s position are larger in the zonal direction, the intensity of the high decreases when it is positioned to the north. This relationship is statistically significant in every month. Seasonal composites and EOF analysis indicate that meridional changes in the position of the SASH dominate interannual variations in austral summer. In particular, the anticyclone tends to be displaced poleward in La Niña years when the southern annular mode (SAM) is in its positive phase and vice versa. Wave activity flux vectors suggest that ENSO-related convective anomalies located in the central-eastern tropical Pacific act as a remote forcing for the meridional variability of the summertime SASH. In southern winter, multiple processes operate in concert to induce interannual variability, and none of them appears to dominate like ENSO does during the summer.

Ocean Science ◽  
2018 ◽  
Vol 14 (3) ◽  
pp. 417-436 ◽  
Author(s):  
Claudia Schmid ◽  
Sudip Majumder

Abstract. The Brazil Current transports from observations and the Hybrid Coordinate Model (HYCOM) model are analyzed to improve our understanding of the current's structure and variability. A time series of the observed transport is derived from a three-dimensional field of the velocity in the South Atlantic covering the years 1993 to 2015 (hereinafter called Argo & SSH). The mean transports of the Brazil Current increases from 3.8 ± 2.2 Sv (1 Sv is 106 m3 s−1) at 25∘ S to 13.9 ± 2.6 Sv at 32∘ S, which corresponds to a mean slope of 1.4 ± 0.4 Sv per degree. Transport estimates derived from HYCOM fields are somewhat higher (5.2 ± 2.7 and 18.7 ± 7.1 Sv at 25 and 32∘ S, respectively) than those from Argo & SSH, but these differences are small when compared with the standard deviations. Overall, the observed latitude dependence of the transport of the Brazil Current is in agreement with the wind-driven circulation in the super gyre of the subtropical South Atlantic. A mean annual cycle with highest (lowest) transports in austral summer (winter) is found to exist at selected latitudes (24, 35, and 38∘ S). The significance of this signal shrinks with increasing latitude (both in Argo & SSH and HYCOM), mainly due to mesoscale and interannual variability. Both Argo & SSH, as well as HYCOM, reveal interannual variability at 24 and 35∘ S that results in relatively large power at periods of 2 years or more in wavelet spectra. It is found that the interannual variability at 24∘ S is correlated with the South Atlantic Subtropical Dipole Mode (SASD), the Southern Annular Mode (SAM), and the Niño 3.4 index. Similarly, correlations between SAM and the Brazil Current transport are also found at 35∘ S. Further investigation of the variability reveals that the first and second mode of a coupled empirical orthogonal function of the meridional transport and the sea level pressure explain 36 and 15 % of the covariance, respectively. Overall, the results indicate that SAM, SASD, and El Niño–Southern Oscillation have an influence on the transport of the Brazil Current.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 259 ◽  
Author(s):  
Zhongda Lin

Extratropical teleconnections significantly affect the climate in subtropical and mid-latitude regions. Understanding the variability of atmospheric teleconnection in the Southern Hemisphere, however, is still limited in contrast with the well-documented counterpart in the Northern Hemisphere. This study investigates the interannual variability of mid-latitude circulation in the Southern Hemisphere in austral summer based on the ERA-Interim reanalysis dataset during 1980–2016. A stationary mid-latitude teleconnection is revealed along the strong Southern Hemisphere westerly jet over the South Atlantic and South Indian Ocean (SAIO). The zonally oriented SAIO pattern represents the first EOF mode of interannual variability of meridional winds at 200 hPa over the region, with a vertical barotropic structure and a zonal wavenumber of 4. It significantly modulates interannual climate variations in the subtropical Southern Hemisphere in austral summer, especially the opposite change in rainfall and surface air temperature between Northwest and Southeast Australia. The SAIO pattern can be efficiently triggered by divergences over mid-latitude South America and the southwest South Atlantic, near the entrance of the westerly jet, which is probably related to the zonal shift of the South Atlantic Convergence Zone. The triggered wave train is then trapped within the Southern Hemisphere westerly jet waveguide and propagates eastward until it diverts northeastward towards Australia at the jet exit, in addition to portion of which curving equatorward at approximately 50° E towards the southwest Indian Ocean.


2017 ◽  
Author(s):  
Claudia Schmid ◽  
Sudip Majumder

Abstract. Brazil Current transports from observations and a model are analyzed to improve our understanding of its structure and variability. The observed transports are derived from a three-dimensional field of the velocity in the South Atlantic covering the years 1993 to 2015 (hereinafter called Argo & SSH). The mean transport of the Brazil Current from 3.8 ± 2.2 Sv (1 Sv is 106 m3s−1) at 25° S to 13.9 ± 2.6 Sv at 32° S, which corresponds to a mean slope of 1.4 ± 0.4 Sv per degree. The Hybrid Coordinate Model (HYCOM) has somewhat higher transports than Argo & SSH (5.2 ± 2.7 Sv and 18.7 ± 7.1 Sv at 25° S and 32° S), but these differences are small when compared with the standard deviations. Overall, the observed latitude dependence of the transport of the Brazil Current is in agreement with the wind-driven circulation in the super gyre of the subtropical South Atlantic. A mean annual cycle with highest (lowest) transports in austral summer (winter) is found to exist at selected latitudes (24° S, 35° S and 38° S). The significance of this signal shrinks with increasing latitude, mainly due to the mesoscale and interannual variability. In addition, it is found that the interannual variability at 24° S is correlated with the Southern Annular Mode and the Niño 3.4 index. A coupled EOF of the meridional transport and the sea level pressure is used to improve the understanding of the impact of these ocean indexes.


2005 ◽  
Vol 18 (16) ◽  
pp. 3339-3355 ◽  
Author(s):  
C. J. C. Reason ◽  
D. Jagadheesha

Abstract The Southwestern Cape (SWC) region of South Africa is characterized by winter rainfall brought mainly via cold fronts and by substantial interannual variability. Previous work has found evidence that the interannual variability in SWC winter rainfall may be related to sea surface temperature (SST) in the South Atlantic Ocean and to large-scale ocean–atmosphere interaction in this region. During wet winters, SST tends to be anomalously warm (cool) in the southwest Atlantic and southeast Atlantic (central South Atlantic). Atmospheric general circulation model experiments with various idealized SST anomalies in the South Atlantic are used to explore mechanisms potentially associated with the rainfall variability. The model results suggest that the atmosphere is sensitive to subtropical–midlatitude SST anomalies in the South Atlantic during winter. Locally, there are changes to the jet position and strength, low-level relative vorticity, and convergence of moisture and latent heat flux that lead to changes in rainfall over the SWC. The model response to the SST forcing also shows large-scale anomalies in the midlatitude Southern Hemisphere circulation, namely, an Antarctic Oscillation–type mode and wavenumber-3 changes, similar to those observed during anomalous winters in the region.


2009 ◽  
Vol 81 (2) ◽  
pp. 243-255 ◽  
Author(s):  
Gelvam A. Hartmann ◽  
Igor G. Pacca

The South Atlantic Magnetic Anomaly (SAMA) is one of the most outstanding anomalies of the geomagnetic field. The SAMA secular variation was obtained and compared to the evolution of other anomalies using spherical harmonic field models for the 1590-2005 period. An analysis of data from four South American observatories shows how this large scale anomaly affected their measurements. Since SAMA is a low total field anomaly, the field was separated into its nondipolar, quadrupolar and octupolar parts. The time evolution of the non-dipole/total, quadrupolar/total and octupolar/total field ratios yielded increasingly high values for the South Atlantic since 1750. The SAMA evolution is compared to the evolution of other large scale surface geomagnetic features like the North and the South Pole and the Siberia High, and this comparison shows the intensity equilibrium between these anomalies in both hemispheres. The analysis of non-dipole fields in historical period suggests that SAMA is governed by (i) quadrupolar field for drift, and (ii) quadrupolar and octupolar fields for intensity and area of influence. Furthermore, our study reinforces the possibility that SAMA may be related to reverse fluxes in the outer core under the South Atlantic region.


2008 ◽  
Vol 21 (17) ◽  
pp. 4424-4448 ◽  
Author(s):  
Xin-Zhong Liang ◽  
Jinhong Zhu ◽  
Kenneth E. Kunkel ◽  
Mingfang Ting ◽  
Julian X. L. Wang

Abstract This study uses the most recent simulations from all available fully coupled atmosphere–ocean general circulation models (CGCMs) to investigate whether the North American monsoon (NAM) precipitation seasonal–interannual variations are simulated and, if so, whether the key underlying physical mechanisms are correctly represented. This is facilitated by first identifying key centers where observed large-scale circulation fields and sea surface temperatures (SSTs) are significantly correlated with the NAM precipitation averages over the core region (central–northwest Mexico) and then examining if the modeled and observed patterns agree. Two new findings result from the analysis of observed NAM interannual variations. First, precipitation exhibits significantly high positive (negative) correlations with 200-hPa meridional wind centered to the northwest (southeast) of the core region in June and September (July and August). As such, wet conditions are associated with strong anomalous southerly upper-level flow on the northwest flank during the monsoon onset and retreat, but with anomalous northerly flow on the southeast flank, during the peak of the monsoon. They are often identified with a cyclonic circulation anomaly pattern over the central Great Plains for the July–August peak monsoon and, reversely, an anticyclonic anomaly pattern centered over the northern (southern) Great Plains for the June (September) transition. Second, wet NAM conditions in June and July are also connected with a SST pattern of positive anomalies in the eastern Pacific and negative anomalies in the Gulf of Mexico, acting to reduce the climatological mean gradient between the two oceans. This pattern suggests a possible surface gradient forcing that favors a westward extension of the North Atlantic subtropical ridge. These two observed features connected to the NAM serve as the metric for quantitative evaluation of the model performance in simulating the important NAM precipitation mechanisms. Out of 17 CGCMs, only the Meteorological Research Institute (MRI) model with a medium resolution consistently captures the observed NAM precipitation annual cycle (having a realistic amplitude and no phase shift) as well as interannual covariations with the planetary circulation patterns (having the correct sign and comparably high magnitude of correlation) throughout the summer. For the metric of correlations with 200-hPa meridional wind, there is general agreement among all CGCMs with observations for June and September. This may indicate that large-scale forcings dominate interannual variability for the monsoon onset and retreat, while variability of the peak of the monsoon in July and August may be largely influenced by local processes that are more challenging for CGCMs to resolve. For the metric of correlations with SSTs, good agreement is found only in June. These results suggest that the NAM precipitation interannual variability may likely be determined by large-scale circulation anomalies, while its predictability based on remote signals such as SSTs may not be sufficiently robust to be well captured by current CGCMs, with the exception of the June monsoon onset which is potentially more predictable.


2014 ◽  
Vol 27 (22) ◽  
pp. 8543-8562 ◽  
Author(s):  
Luiz Felippe Gozzo ◽  
Rosmeri P. da Rocha ◽  
Michelle S. Reboita ◽  
Shigetoshi Sugahara

Abstract Hurricane Catarina (2004) and subtropical storm Anita (2010) called attention to the development of subtropical cyclones (SCs) over the South Atlantic basin. Besides strong and organized storms, a large number of weaker, shallower cyclones with both extratropical and tropical characteristics form in the region, impacting the South American coast. The main focus of this study is to simulate a climatology of subtropical cyclones and their synoptic pattern over the South Atlantic, proposing a broader definition of these systems. In addition, a case study is presented to discuss the main characteristics of one weak SC. The Interim ECMWF Re-Analysis (ERA-Interim) and NCEP–NCAR reanalysis are used to construct the 33-yr (1979–2011) climatology, and a comparison between them is established. Both reanalyses show good agreement in the SCs’ intensity, geographical distribution, and seasonal variability, but the interannual variability is poorly correlated. Anomaly composites for austral summer show that subtropical cyclogenesis occurs under a dipole-blocking pattern in upper levels. Upward motion is enhanced by the vertical temperature gradient between a midtropospheric cold cutoff low/trough and the intense low-level warm air advection by the South Atlantic subtropical high. Turbulent fluxes in the cyclone region are not above average during cyclogenesis, but the subtropical high flow advects great amounts of moisture from distant regions to fuel the convective activity. Although most of the SCs develop during austral summer (December–February), it is in autumn (March–May) that the most “tropical” environment is found (stronger surface fluxes and weaker vertical wind shear), leading to the most intense episodes.


2015 ◽  
Vol 28 (8) ◽  
pp. 3311-3330 ◽  
Author(s):  
Irina Rudeva ◽  
Ian Simmonds

Abstract Presented here is a global analysis of frontal activity variability derived from ERA-Interim data over the 34-yr period of January 1979–March 2013 using a state-of-the-art frontal tracking scheme. In December–February over that epoch, there is a northward shift of frontal activity in the Pacific in the Northern Hemisphere (NH). In the Southern Hemisphere (SH), the largest trends are identified in the austral summer and are manifested by a southward shift of frontal activity over the Southern Ocean. Variability of frontal behavior is found to be closely related to the main modes of atmospheric circulation, such as the North Atlantic Oscillation (NAO) for the Atlantic–European sector in the NH and the southern annular mode (SAM) in the middle and high latitudes of the SH. A signal associated with El Niño and hence emanating from the tropics is also apparent in the behavior of frontal systems over the Pacific by a reduction in the number of fronts in the middle South Pacific and intensification of frontal activity in high and low latitudes throughout the year. It is shown in general that the associations of the large-scale modes with frontal variability are much stronger than with cyclones. This indicates that the quantification of the behavior of fronts is an important component of understanding the climate system. At the very high latitudes, it is also shown here that, in the recent years of rapid sea ice reduction in the Arctic, there have been fewer summer fronts observed over the Canadian Arctic.


2019 ◽  
Author(s):  
Hamed D. Ibrahim

North and South Atlantic lateral volume exchange is a key component of the Atlantic Meridional Overturning Circulation (AMOC) embedded in Earth’s climate. Northward AMOC heat transport within this exchange mitigates the large heat loss to the atmosphere in the northern North Atlantic. Because of inadequate climate data, observational basin-scale studies of net interbasin exchange between the North and South Atlantic have been limited. Here ten independent climate datasets, five satellite-derived and five analyses, are synthesized to show that North and South Atlantic climatological net lateral volume exchange is partitioned into two seasonal regimes. From late-May to late-November, net lateral volume flux is from the North to the South Atlantic; whereas from late-November to late-May, net lateral volume flux is from the South to the North Atlantic. This climatological characterization offers a framework for assessing seasonal variations in these basins and provides a constraint for climate models that simulate AMOC dynamics.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Mariela Gabioux ◽  
Vladimir Santos da Costa ◽  
Joao Marcos Azevedo Correia de Souza ◽  
Bruna Faria de Oliveira ◽  
Afonso De Moraes Paiva

Results of the basic model configuration of the REMO project, a Brazilian approach towards operational oceanography, are discussed. This configuration consists basically of a high-resolution eddy-resolving, 1/12 degree model for the Metarea V, nested in a medium-resolution eddy-permitting, 1/4 degree model of the Atlantic Ocean. These simulations performed with HYCOM model, aim for: a) creating a basic set-up for implementation of assimilation techniques leading to ocean prediction; b) the development of hydrodynamics bases for environmental studies; c) providing boundary conditions for regional domains with increased resolution. The 1/4 degree simulation was able to simulate realistic equatorial and south Atlantic large scale circulation, both the wind-driven and the thermohaline components. The high resolution simulation was able to generate mesoscale and represent well the variability pattern within the Metarea V domain. The BC mean transport values were well represented in the southwestern region (between Vitória-Trinidade sea mount and 29S), in contrast to higher latitudes (higher than 30S) where it was slightly underestimated. Important issues for the simulation of the South Atlantic with high resolution are discussed, like the ideal place for boundaries, improvements in the bathymetric representation and the control of bias SST, by the introducing of a small surface relaxation. In order to make a preliminary assessment of the model behavior when submitted to data assimilation, the Cooper & Haines (1996) method was used to extrapolate SSH anomalies fields to deeper layers every 7 days, with encouraging results.


Sign in / Sign up

Export Citation Format

Share Document