scholarly journals Critically Reassessing Tropospheric Temperature Trends from Radiosondes Using Realistic Validation Experiments

2009 ◽  
Vol 22 (3) ◽  
pp. 465-485 ◽  
Author(s):  
Holly A. Titchner ◽  
P. W. Thorne ◽  
M. P. McCarthy ◽  
S. F. B. Tett ◽  
L. Haimberger ◽  
...  

Abstract Biases and uncertainties in large-scale radiosonde temperature trends in the troposphere are critically reassessed. Realistic validation experiments are performed on an automatic radiosonde homogenization system by applying it to climate model data with four distinct sets of simulated breakpoint profiles. Knowledge of the “truth” permits a critical assessment of the ability of the system to recover the large-scale trends and a reinterpretation of the results when applied to the real observations. The homogenization system consistently reduces the bias in the daytime tropical, global, and Northern Hemisphere (NH) extratropical trends but underestimates the full magnitude of the bias. Southern Hemisphere (SH) extratropical and all nighttime trends were less well adjusted owing to the sparsity of stations. The ability to recover the trends is dependent on the underlying error structure, and the true trend does not necessarily lie within the range of estimates. The implications are that tropical tropospheric trends in the unadjusted daytime radiosonde observations, and in many current upper-air datasets, are biased cold, but the degree of this bias cannot be robustly quantified. Therefore, remaining biases in the radiosonde temperature record may account for the apparent tropical lapse rate discrepancy between radiosonde data and climate models. Furthermore, the authors find that the unadjusted global and NH extratropical tropospheric trends are biased cold in the daytime radiosonde observations. Finally, observing system experiments show that, if the Global Climate Observing System (GCOS) Upper Air Network (GUAN) were to make climate quality observations adhering to the GCOS monitoring principles, then one would be able to constrain the uncertainties in trends at a more comprehensive set of stations. This reaffirms the importance of running GUAN under the GCOS monitoring principles.

2021 ◽  
Vol 34 (2) ◽  
pp. 509-525
Author(s):  
David P. Rowell ◽  
Rory G. J. Fitzpatrick ◽  
Lawrence S. Jackson ◽  
Grace Redmond

AbstractProjected changes in the intensity of severe rain events over the North African Sahel—falling from large mesoscale convective systems—cannot be directly assessed from global climate models due to their inadequate resolution and parameterization of convection. Instead, the large-scale atmospheric drivers of these storms must be analyzed. Here we study changes in meridional lower-tropospheric temperature gradient across the Sahel (ΔTGrad), which affect storm development via zonal vertical wind shear and Saharan air layer characteristics. Projected changes in ΔTGrad vary substantially among models, adversely affecting planning decisions that need to be resilient to adverse risks, such as increased flooding. This study seeks to understand the causes of these projection uncertainties and finds three key drivers. The first is intermodel variability in remote warming, which has strongest impact on the eastern Sahel, decaying toward the west. Second, and most important, a warming–advection–circulation feedback in a narrow band along the southern Sahara varies in strength between models. Third, variations in southern Saharan evaporative anomalies weakly affect ΔTGrad, although for an outlier model these are sufficiently substantive to reduce warming here to below that of the global mean. Together these uncertain mechanisms lead to uncertain southern Saharan/northern Sahelian warming, causing the bulk of large intermodel variations in ΔTGrad. In the southern Sahel, a local negative feedback limits the contribution to uncertainties in ΔTGrad. This new knowledge of ΔTGrad projection uncertainties provides understanding that can be used, in combination with further research, to constrain projections of severe Sahelian storm activity.


2019 ◽  
Vol 32 (13) ◽  
pp. 4089-4102 ◽  
Author(s):  
Ryan J. Kramer ◽  
Brian J. Soden ◽  
Angeline G. Pendergrass

Abstract We analyze the radiative forcing and radiative response at Earth’s surface, where perturbations in the radiation budget regulate the atmospheric hydrological cycle. By applying a radiative kernel-regression technique to CMIP5 climate model simulations where CO2 is instantaneously quadrupled, we evaluate the intermodel spread in surface instantaneous radiative forcing, radiative adjustments to this forcing, and radiative responses to surface warming. The cloud radiative adjustment to CO2 forcing and the temperature-mediated cloud radiative response exhibit significant intermodel spread. In contrast to its counterpart at the top of the atmosphere, the temperature-mediated cloud radiative response at the surface is found to be positive in some models and negative in others. Also, the compensation between the temperature-mediated lapse rate and water vapor radiative responses found in top-of-atmosphere calculations is not present for surface radiative flux changes. Instantaneous radiative forcing at the surface is rarely reported for model simulations; as a result, intermodel differences have not previously been evaluated in global climate models. We demonstrate that the instantaneous radiative forcing is the largest contributor to intermodel spread in effective radiative forcing at the surface. We also find evidence of differences in radiative parameterizations in current models and argue that this is a significant, but largely overlooked, source of bias in climate change simulations.


2017 ◽  
Vol 30 (8) ◽  
pp. 2867-2884 ◽  
Author(s):  
Ross D. Dixon ◽  
Anne Sophie Daloz ◽  
Daniel J. Vimont ◽  
Michela Biasutti

Representing the West African monsoon (WAM) is a major challenge in climate modeling because of the complex interaction between local and large-scale mechanisms. This study focuses on the representation of a key aspect of West African climate, namely the Saharan heat low (SHL), in 22 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) multimodel dataset. Comparison of the CMIP5 simulations with reanalyses shows large biases in the strength and location of the mean SHL. CMIP5 models tend to develop weaker climatological heat lows than the reanalyses and place them too far southwest. Models that place the climatological heat low farther to the north produce more mean precipitation across the Sahel, while models that place the heat low farther to the east produce stronger African easterly wave (AEW) activity. These mean-state biases are seen in model ensembles with both coupled and fixed sea surface temperatures (SSTs). The importance of SSTs on West African climate variability is well documented, but this research suggests SSTs are secondary to atmospheric biases for understanding the climatological SHL bias. SHL biases are correlated across the models to local radiative terms, large-scale tropical precipitation, and large-scale pressure and wind across the Atlantic, suggesting that local mechanisms that control the SHL may be connected to climate model biases at a much larger scale.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Bernd Kärcher ◽  
Fabian Mahrt ◽  
Claudia Marcolli

AbstractFully accounting for the climate impact of aviation requires a process-level understanding of the impact of aircraft soot particle emissions on the formation of ice clouds. Assessing this impact with the help of global climate models remains elusive and direct observations are lacking. Here we use a high-resolution cirrus column model to investigate how aircraft-emitted soot particles, released after ice crystals sublimate at the end of the lifetime of contrails and contrail cirrus, perturb the formation of cirrus. By allying cloud simulations with a measurement-based description of soot-induced ice formation, we find that only a small fraction (<1%) of the soot particles succeeds in forming cloud ice alongside homogeneous freezing of liquid aerosol droplets. Thus, soot-perturbed and homogeneously-formed cirrus fundamentally do not differ in optical depth. Our results imply that climate model estimates of global radiative forcing from interactions between aircraft soot and large-scale cirrus may be overestimates. The improved scientific understanding reported here provides a process-based underpinning for improved climate model parametrizations and targeted field observations.


2018 ◽  
Vol 31 (24) ◽  
pp. 10013-10020
Author(s):  
Bernard R. Lipat ◽  
Aiko Voigt ◽  
George Tselioudis ◽  
Lorenzo M. Polvani

Recent analyses of global climate models suggest that uncertainty in the coupling between midlatitude clouds and the atmospheric circulation contributes to uncertainty in climate sensitivity. However, the reasons behind model differences in the cloud–circulation coupling have remained unclear. Here, we use a global climate model in an idealized aquaplanet setup to show that the Southern Hemisphere climatological circulation, which in many models is biased equatorward, contributes to the model differences in the cloud–circulation coupling. For the same poleward shift of the Hadley cell (HC) edge, models with narrower climatological HCs exhibit stronger midlatitude cloud-induced shortwave warming than models with wider climatological HCs. This cloud-induced radiative warming results predominantly from a subsidence warming that decreases cloud fraction and is stronger for narrower HCs because of a larger meridional gradient in the vertical velocity. A comparison of our aquaplanet results with comprehensive climate models suggests that about half of the model uncertainty in the midlatitude cloud–circulation coupling stems from this impact of the circulation on the large-scale temperature structure of the atmosphere, and thus could be removed by improving the climatological circulation in models. This illustrates how understanding of large-scale dynamics can help reduce uncertainty in clouds and their response to climate change.


2011 ◽  
Vol 11 (1) ◽  
pp. 3399-3459 ◽  
Author(s):  
M. Wang ◽  
S. Ghan ◽  
M. Ovchinnikov ◽  
X. Liu ◽  
R. Easter ◽  
...  

Abstract. Much of the large uncertainty in estimates of anthropogenic aerosol effects on climate arises from the multi-scale nature of the interactions between aerosols, clouds and large-scale dynamics, which are difficult to represent in conventional global climate models (GCMs). In this study, we use a multi-scale aerosol-climate model that treats aerosols and clouds across multiple scales to study aerosol indirect effects. This multi-scale aerosol-climate model is an extension of a multi-scale modeling framework (MMF) model that embeds a cloud-resolving model (CRM) within each grid cell of a GCM. The extension allows the explicit simulation of aerosol/cloud interactions in both stratiform and convective clouds on the global scale in a computationally feasible way. Simulated model fields, including liquid water path (LWP), ice water path, cloud fraction, shortwave and longwave cloud forcing, precipitation, water vapor, and cloud droplet number concentration are in agreement with observations. The new model performs quantitatively similar to the previous version of the MMF model in terms of simulated cloud fraction and precipitation. The simulated change in shortwave cloud forcing from anthropogenic aerosols is −0.77 W m−2, which is less than half of that in the host GCM (NCAR CAM5) (−1.79 W m−2) and is also at the low end of the estimates of most other conventional global aerosol-climate models. The smaller forcing in the MMF model is attributed to its smaller increase in LWP from preindustrial conditions (PI) to present day (PD): 3.9% in the MMF, compared with 15.6% increase in LWP in large-scale clouds in CAM5. The much smaller increase in LWP in the MMF is caused by a much smaller response in LWP to a given perturbation in cloud condensation nuclei (CCN) concentrations from PI to PD in the MMF (about one-third of that in CAM5), and, to a lesser extent, by a smaller relative increase in CCN concentrations from PI to PD in the MMF (about 26% smaller than that in CAM5). The smaller relative increase in CCN concentrations in the MMF is caused in part by a smaller increase in aerosol lifetime from PI to PD in the MMF, a positive feedback in aerosol indirect effects induced by cloud lifetime effects. The smaller response in LWP to anthropogenic aerosols in the MMF model is consistent with observations and with high resolution model studies, which may indicate that aerosol indirect effects simulated in conventional global climate models are overestimated and point to the need to use global high resolution models, such as MMF models or global CRMs, to study aerosol indirect effects. The simulated total anthropogenic aerosol effect in the MMF is −1.05 W m−2, which is close to the Murphy et al. (2009) inverse estimate of −1.1 ± 0.4 W m−2 (1σ) based on the examination of the Earth's energy balance. Further improvements in the representation of ice nucleation and low clouds are needed.


2019 ◽  
Author(s):  
William T. Ball ◽  
Gabriel Chiodo ◽  
Marta Abalos ◽  
Justin Alsing

Abstract. The stratospheric ozone layer shields surface life from harmful ultraviolet radiation. Following the Montreal Protocol ban of long-lived ozone depleting substances (ODSs), rapid depletion of total column ozone (TCO) ceased in the late 1990s and ozone above 32 km now enjoys a clear recovery. However, there is still no confirmation of TCO recovery, and evidence has emerged that ongoing quasi-global (60° S–60° N) lower stratospheric ozone decreases may be responsible, dominated by low latitudes (30° S–30° N). Chemistry climate models (CCMs) used to project future changes predict that lower stratospheric ozone will decrease in the tropics by 2100, but not at mid-latitudes (30°–60°). Here, we show that CCMs display an ozone decline similar to that observed in the tropics over 1998–2016, likely driven by a increase of tropical upwelling. On the other hand, mid-latitude lower stratospheric ozone is observed to decrease, while CCMs show an increase. Despite opposing lower stratospheric ozone changes, which should induce opposite temperature trends, CCM and observed temperature trends agree; we demonstrate that opposing model-observation stratospheric water vapour (SWV) trends, and their associated radiative effects, explain why temperature changes agree in spite of opposing ozone trends. We provide new evidence that the observed mid-latitude trends can be explained by enhanced mixing between the tropics and extratropics. We further show that the temperature trends are consistent with the observed mid-latitude ozone decrease. Together, our results suggest that large scale circulation changes expected in the future from increased greenhouse gases (GHGs) may now already be underway, but that most CCMs are not simulating well mid-latitude ozone layer changes. The reason CCMs do not exhibit the observed changes urgently needs to be understood to improve confidence in future projections of the ozone layer.


2014 ◽  
Vol 71 (9) ◽  
pp. 3376-3391 ◽  
Author(s):  
Claudia Stephan ◽  
M. Joan Alexander

Abstract Gravity waves have important effects on the middle atmosphere circulation, and those generated by convection are prevalent in the tropics and summer midlatitudes. Numerous case studies have been carried out to investigate their characteristics in high-resolution simulations. Here, the impact of the choice of physics parameterizations on the generation and spectral properties of these waves in models is investigated. Using the Weather Research and Forecasting Model (WRF) a summertime squall line over the Great Plains is simulated in a three-dimensional, nonlinear, and nonhydrostatic mesoscale framework. The distributions of precipitation strength and echo tops in the simulations are compared with radar data. Unsurprisingly, those storm features are most sensitive to the microphysics scheme. However, it is found that these variations in storm morphology have little influence on the simulated stratospheric momentum flux spectra. These results support the fundamental idea behind climate model parameterizations: that the large-scale storm conditions can be used to predict the spectrum of gravity wave momentum flux above the storm irrespective of the convective details that coarse-resolution models cannot capture. The simulated spectra are then contrasted with those obtained from a parameterization used in global climate models. The parameterization reproduces the shape of the spectra reasonably well but their magnitudes remain highly sensitive to the peak heating rate within the convective cells.


2016 ◽  
Vol 9 (1) ◽  
pp. 1-14
Author(s):  
Dharmaveer Singh ◽  
R.D. Gupta ◽  
Sanjay K. Jain

The ensembles of two Global Climate Models (GCMs) namely, third generation Canadian Coupled Global Climate Model (CGCM3) and Hadley Center Coupled Model, version 3 (HadCM3) are used to project future precipitation in a part of North-Western (N-W) Himalayan region, India. Statistical downscaling method is used to downscale and generate future scenarios of precipitation at station scale from large scale climate variables obtained from GCMs. The observed historical precipitation data has been collected for three metrological stations, namely, Rampur, Sunni and Kasol falling in the basin for further analysis. The future trends and patterns in precipitation under scenarios A2 and A1B for CGCM3 model, and A2 and B2 for HadCM3 model are analyzed for these stations under three different time periods: 2020’s, 2050’s and 2080’s. An overall rise in mean annual precipitation under scenarios A2 and A1B for CGCM3 model have been noticed for future periods: 2020’s, 2050’s and 2080’s. Decrease, in precipitation has been found under A2 and B2 scenarios of HadCM3 model for 2050’s and slight increase for 2080’s periods. Based on the analysis of results, CGCM3 model has been found better for simulation of precipitation in comparison to HadCM3 model.Journal of Hydrology and Meteorology, Vol. 9(1) 2015, p.1-14


2019 ◽  
Vol 32 (15) ◽  
pp. 4601-4620 ◽  
Author(s):  
Kun Wu ◽  
Jiangnan Li ◽  
Jason Cole ◽  
Xianglei Huang ◽  
Knut von Salzen ◽  
...  

AbstractThree aspects of longwave (LW) radiation processes are investigated using numerical experiments with the Canadian Atmospheric Global Climate Model version 4.3 (CanAM4.3). These are the overlapping LW and shortwave (SW) radiation, scattering by clouds, and specification of ocean emissivity. For the overlapping of solar and infrared spectra, using a single band scheme was compared against a method directly inputting solar energy. Offline calculations show that for high clouds using the single band can cause an overestimate of the downward LW flux, whereas a method that accounts for input solar energy in the LW yields results that are more accurate. Longwave scattering by clouds traps more infrared energy in the atmosphere and reduces the outgoing radiation to space. Simulations with CanAM4.3 show that cloud LW scattering can enhance the LW cooling rate above the tropopause and reduce it inside the troposphere, resulting in warmer temperatures, especially in the tropics and low latitudes. This implies a larger temperature gradient toward the polar region, which causes a strengthening of the Hadley circulation and shifting of the intertropical convergence zone (ITCZ). The increase in lower tropospheric temperature also affects the lower troposphere water vapor and precipitation. Sensitivity to the specification of ocean emissivity is examined by comparing a broadband scheme dependent on the surface wind and solar zenith angle against one that resolves the wavelength dependence. Experiments with CanAM4.3 show that the two oceanic emissivity schemes can produce over 1 W m−2 seasonal mean difference of the upward flux at the surface.


Sign in / Sign up

Export Citation Format

Share Document