Importance of Ocean Heat Uptake Efficacy to Transient Climate Change

2010 ◽  
Vol 23 (9) ◽  
pp. 2333-2344 ◽  
Author(s):  
Michael Winton ◽  
Ken Takahashi ◽  
Isaac M. Held

Abstract This article proposes a modification to the standard forcing–feedback diagnostic energy balance model to account for 1) differences between effective and equilibrium climate sensitivities and 2) the variation of effective sensitivity over time in climate change experiments with coupled atmosphere–ocean climate models. In the spirit of Hansen et al. an efficacy factor is applied to the ocean heat uptake. Comparing the time evolution of the surface warming in high and low efficacy models demonstrates the role of this efficacy in the transient response to CO2 forcing. Abrupt CO2 increase experiments show that the large efficacy of the Geophysical Fluid Dynamics Laboratory’s Climate Model version 2.1 (CM2.1) sets up in the first two decades following the increase in forcing. The use of an efficacy is necessary to fit this model’s global mean temperature evolution in periods with both increasing and stable forcing. The intermodel correlation of transient climate response with ocean heat uptake efficacy is greater than its correlation with equilibrium climate sensitivity in an ensemble of climate models used for the third and fourth Intergovernmental Panel on Climate Change (IPCC) assessments. When computed at the time of doubling in the standard experiment with 1% yr−1 increase in CO2, the efficacy is variable amongst the models but is generally greater than 1, averages between 1.3 and 1.4, and is as large as 1.75 in several models.

2007 ◽  
Vol 20 (10) ◽  
pp. 2315-2320 ◽  
Author(s):  
M. Collins ◽  
C. M. Brierley ◽  
M. MacVean ◽  
B. B. B. Booth ◽  
G. R. Harris

Abstract “Perturbed physics” ensembles of Hadley Centre climate models have recently been used to quantify uncertainties in atmospheric and surface climate feedbacks under enhanced levels of CO2, and to produce probabilistic estimates of the magnitude of equilibrium climate change. The rate of time-dependent climate change is determined both by the strength of atmosphere–surface climate feedbacks and by the strength of processes that remove heat from the surface to the deep ocean. Here a first small ensemble of coupled atmosphere–ocean climate model experiments in which the parameters that control three key ocean physical processes are perturbed is described. It is found that the perturbations have little impact on the rate of ocean heat uptake, and thus have little impact on the time-dependent rate of global warming. Under the idealized scenario of 1% yr−1 compounded CO2 increase, the spread in the transient climate response is of the order of a few tenths of a degree, in contrast to the spread of order of 1° caused by perturbing atmospheric model parameters.


2021 ◽  
Author(s):  
Negar Vakilifard ◽  
Katherine Turner ◽  
Ric Williams ◽  
Philip Holden ◽  
Neil Edwards ◽  
...  

<p>The controls of the effective transient climate response (TCRE), defined in terms of the dependence of surface warming since the pre-industrial to the cumulative carbon emission, is explained in terms of climate model experiments for a scenario including positive emissions and then negative emission over a period of 400 years. We employ a pre-calibrated ensemble of GENIE, grid-enabled integrated Earth system model, consisting of 86 members to determine the process of controlling TCRE in both CO<sub>2</sub> emissions and drawdown phases. Our results are based on the GENIE simulations with historical forcing from AD 850 including land use change, and the future forcing defined by CO<sub>2</sub> emissions and a non-CO<sub>2</sub> radiative forcing timeseries. We present the results for the point-source carbon capture and storage (CCS) scenario as a negative emission scenario, following the medium representative concentration pathway (RCP4.5), assuming that the rate of emission drawdown is 2 PgC/yr CO<sub>2</sub> for the duration of 100 years. The climate response differs between the periods of positive and negative carbon emissions with a greater ensemble spread during the negative carbon emissions. The controls of the spread in ensemble responses are explained in terms of a combination of thermal processes (involving ocean heat uptake and physical climate feedback), radiative processes (saturation in radiative forcing from CO<sub>2</sub> and non-CO<sub>2</sub> contributions) and carbon dependences (involving terrestrial and ocean carbon uptake).  </p>


2010 ◽  
Vol 23 (23) ◽  
pp. 6143-6152 ◽  
Author(s):  
Adam A. Scaife ◽  
Tim Woollings ◽  
Jeff Knight ◽  
Gill Martin ◽  
Tim Hinton

Abstract Models often underestimate blocking in the Atlantic and Pacific basins and this can lead to errors in both weather and climate predictions. Horizontal resolution is often cited as the main culprit for blocking errors due to poorly resolved small-scale variability, the upscale effects of which help to maintain blocks. Although these processes are important for blocking, the authors show that much of the blocking error diagnosed using common methods of analysis and current climate models is directly attributable to the climatological bias of the model. This explains a large proportion of diagnosed blocking error in models used in the recent Intergovernmental Panel for Climate Change report. Furthermore, greatly improved statistics are obtained by diagnosing blocking using climate model data corrected to account for mean model biases. To the extent that mean biases may be corrected in low-resolution models, this suggests that such models may be able to generate greatly improved levels of atmospheric blocking.


2011 ◽  
Vol 15 (3) ◽  
pp. 897-912 ◽  
Author(s):  
N. W. Arnell

Abstract. This paper assesses the relationship between amount of climate forcing – as indexed by global mean temperature change – and hydrological response in a sample of UK catchments. It constructs climate scenarios representing different changes in global mean temperature from an ensemble of 21 climate models assessed in the IPCC AR4. The results show a considerable range in impact between the 21 climate models, with – for example – change in summer runoff at a 2 °C increase in global mean temperature varying between −40% and +20%. There is evidence of clustering in the results, particularly in projected changes in summer runoff and indicators of low flows, implying that the ensemble mean is not an appropriate generalised indicator of impact, and that the standard deviation of responses does not adequately characterise uncertainty. The uncertainty in hydrological impact is therefore best characterised by considering the shape of the distribution of responses across multiple climate scenarios. For some climate model patterns, and some catchments, there is also evidence that linear climate change forcings produce non-linear hydrological impacts. For most variables and catchments, the effects of climate change are apparent above the effects of natural multi-decadal variability with an increase in global mean temperature above 1 °C, but there are differences between catchments. Based on the scenarios represented in the ensemble, the effect of climate change in northern upland catchments will be seen soonest in indicators of high flows, but in southern catchments effects will be apparent soonest in measures of summer and low flows. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation.


2010 ◽  
Vol 7 (5) ◽  
pp. 7633-7667 ◽  
Author(s):  
N. W. Arnell

Abstract. This paper assesses the relationship between amount of climate forcing – as indexed by global mean temperature change – and hydrological response in a sample of UK catchments. It constructs climate scenarios representing different changes in global mean temperature from an ensemble of 21 climate models assessed in the IPCC AR4. The results show a considerable range in impact between the 21 climate models, with – for example – change in summer runoff at a 2 °C increase in global mean temperature varying between −40% and +20%. There is evidence of clustering in the results, particularly in projected changes in summer runoff and indicators of low flows, implying that the ensemble mean is not an appropriate generalised indicator of impact, and that the standard deviation of responses does not adequately characterise uncertainty. The uncertainty in hydrological impact is therefore best characterised by considering the shape of the distribution of responses across multiple climate scenarios. For some climate model patterns, and some catchments, there is also evidence that linear climate change forcings produce non-linear hydrological impacts. For most variables and catchments, the effects of climate change are apparent above the effects of natural multi-decadal variability with an increase in global mean temperature above 1 °C, but there are differences between catchments. Based on the scenarios represented in the ensemble, it is likely that the effect of climate change in northern upland catchments will be seen soonest in indicators of high flows, but in southern catchments effects will be apparent soonest in measures of summer and low flows. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation.


2018 ◽  
Vol 11 (6) ◽  
pp. 2273-2297 ◽  
Author(s):  
Christopher J. Smith ◽  
Piers M. Forster ◽  
Myles Allen ◽  
Nicholas Leach ◽  
Richard J. Millar ◽  
...  

Abstract. Simple climate models can be valuable if they are able to replicate aspects of complex fully coupled earth system models. Larger ensembles can be produced, enabling a probabilistic view of future climate change. A simple emissions-based climate model, FAIR, is presented, which calculates atmospheric concentrations of greenhouse gases and effective radiative forcing (ERF) from greenhouse gases, aerosols, ozone and other agents. Model runs are constrained to observed temperature change from 1880 to 2016 and produce a range of future projections under the Representative Concentration Pathway (RCP) scenarios. The constrained estimates of equilibrium climate sensitivity (ECS), transient climate response (TCR) and transient climate response to cumulative CO2 emissions (TCRE) are 2.86 (2.01 to 4.22) K, 1.53 (1.05 to 2.41) K and 1.40 (0.96 to 2.23) K (1000 GtC)−1 (median and 5–95 % credible intervals). These are in good agreement with the likely Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) range, noting that AR5 estimates were derived from a combination of climate models, observations and expert judgement. The ranges of future projections of temperature and ranges of estimates of ECS, TCR and TCRE are somewhat sensitive to the prior distributions of ECS∕TCR parameters but less sensitive to the ERF from a doubling of CO2 or the observational temperature dataset used to constrain the ensemble. Taking these sensitivities into account, there is no evidence to suggest that the median and credible range of observationally constrained TCR or ECS differ from climate model-derived estimates. The range of temperature projections under RCP8.5 for 2081–2100 in the constrained FAIR model ensemble is lower than the emissions-based estimate reported in AR5 by half a degree, owing to differences in forcing assumptions and ECS∕TCR distributions.


2012 ◽  
Vol 25 (12) ◽  
pp. 4097-4115 ◽  
Author(s):  
Shuguang Wang ◽  
Edwin P. Gerber ◽  
Lorenzo M. Polvani

Abstract The circulation response of the atmosphere to climate change–like thermal forcing is explored with a relatively simple, stratosphere-resolving general circulation model. The model is forced with highly idealized physics, but integrates the primitive equations at resolution comparable to comprehensive climate models. An imposed forcing mimics the warming induced by greenhouse gasses in the low-latitude upper troposphere. The forcing amplitude is progressively increased over a range comparable in magnitude to the warming projected by Intergovernmental Panel on Climate Change coupled climate model scenarios. For weak to moderate warming, the circulation response is remarkably similar to that found in comprehensive models: the Hadley cell widens and weakens, the tropospheric midlatitude jets shift poleward, and the Brewer–Dobson circulation (BDC) increases. However, when the warming of the tropical upper troposphere exceeds a critical threshold, ~5 K, an abrupt change of the atmospheric circulation is observed. In the troposphere the extratropical eddy-driven jet jumps poleward nearly 10°. In the stratosphere the polar vortex intensifies and the BDC weakens as the intraseasonal coupling between the troposphere and the stratosphere shuts down. The key result of this study is that an abrupt climate transition can be effected by changes in atmospheric dynamics alone, without need for the strong nonlinearities typically associated with physical parameterizations. It is verified that the abrupt climate shift reported here is not an artifact of the model’s resolution or numerics.


2013 ◽  
Vol 26 (10) ◽  
pp. 3394-3414 ◽  
Author(s):  
C. Adam Schlosser ◽  
Xiang Gao ◽  
Kenneth Strzepek ◽  
Andrei Sokolov ◽  
Chris E. Forest ◽  
...  

Abstract The growing need for risk-based assessments of impacts and adaptation to climate change calls for increased capability in climate projections: specifically, the quantification of the likelihood of regional outcomes and the representation of their uncertainty. Herein, the authors present a technique that extends the latitudinal projections of the 2D atmospheric model of the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM) by applying longitudinally resolved patterns from observations, and from climate model projections archived from exercises carried out for the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC). The method maps the IGSM zonal means across longitude using a set of transformation coefficients, and this approach is demonstrated in application to near-surface air temperature and precipitation, for which high-quality observational datasets and model simulations of climate change are available. The current climatology of the transformation coefficients is observationally based. To estimate how these coefficients may alter with climate, the authors characterize the climate models’ spatial responses, relative to their zonal mean, from transient increases in trace-gas concentrations and then normalize these responses against their corresponding transient global temperature responses. This procedure allows for the construction of metaensembles of regional climate outcomes, combining the ensembles of the MIT IGSM—which produce global and latitudinal climate projections, with uncertainty, under different global climate policy scenarios—with regionally resolved patterns from the archived IPCC climate model projections. This hybridization of the climate model longitudinal projections with the global and latitudinal patterns projected by the IGSM can, in principle, be applied to any given state or flux variable that has the sufficient observational and model-based information.


Author(s):  
Nathan P. Gillett

Projected climate change integrates the net response to multiple climate feedbacks. Whereas existing long-term climate change projections are typically based on unweighted individual climate model simulations, as observed climate change intensifies it is increasingly becoming possible to constrain the net response to feedbacks and hence projected warming directly from observed climate change. One approach scales simulated future warming based on a fit to observations over the historical period, but this approach is only accurate for near-term projections and for scenarios of continuously increasing radiative forcing. For this reason, the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) included such observationally constrained projections in its assessment of warming to 2035, but used raw model projections of longer term warming to 2100. Here a simple approach to weighting model projections based on an observational constraint is proposed which does not assume a linear relationship between past and future changes. This approach is used to weight model projections of warming in 2081–2100 relative to 1986–2005 under the Representative Concentration Pathway 4.5 forcing scenario, based on an observationally constrained estimate of the Transient Climate Response derived from a detection and attribution analysis. The resulting observationally constrained 5–95% warming range of 0.8–2.5 K is somewhat lower than the unweighted range of 1.1–2.6 K reported in the IPCC AR5.


2014 ◽  
Vol 27 (16) ◽  
pp. 6358-6375 ◽  
Author(s):  
Masakazu Yoshimori ◽  
Ayako Abe-Ouchi ◽  
Masahiro Watanabe ◽  
Akira Oka ◽  
Tomoo Ogura

Abstract It is one of the most robust projected responses of climate models to the increase of atmospheric CO2 concentration that the Arctic experiences a rapid warming with a magnitude larger than the rest of the world. While many processes are proposed as important, the relative contribution of individual processes to the Arctic warming is not often investigated systematically. Feedbacks are quantified in two different versions of an atmosphere–ocean GCM under idealized transient experiments based on an energy balance analysis that extends from the surface to the top of the atmosphere. The emphasis is placed on the largest warming from late autumn to early winter (October–December) and the difference from other seasons. It is confirmed that dominating processes vary with season. In autumn, the largest contribution to the Arctic surface warming is made by a reduction of ocean heat storage and cloud radiative feedback. In the annual mean, on the other hand, it is the albedo feedback that contributes the most, with increasing ocean heat uptake to the deeper layers working as a negative feedback. While the qualitative results are robust between the two models, they differ quantitatively, indicating the need for further constraint on each process. Ocean heat uptake, lower tropospheric stability, and low-level cloud response probably require special attention.


Sign in / Sign up

Export Citation Format

Share Document